This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The transposition of a matrix multiplied with a scalar equals the transposed matrix multiplied with the scalar, see also the statement in Lang p. 505. (Contributed by Stefan O'Rear, 17-Jul-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mattposvs.a | ⊢ 𝐴 = ( 𝑁 Mat 𝑅 ) | |
| mattposvs.b | ⊢ 𝐵 = ( Base ‘ 𝐴 ) | ||
| mattposvs.k | ⊢ 𝐾 = ( Base ‘ 𝑅 ) | ||
| mattposvs.v | ⊢ · = ( ·𝑠 ‘ 𝐴 ) | ||
| Assertion | mattposvs | ⊢ ( ( 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵 ) → tpos ( 𝑋 · 𝑌 ) = ( 𝑋 · tpos 𝑌 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mattposvs.a | ⊢ 𝐴 = ( 𝑁 Mat 𝑅 ) | |
| 2 | mattposvs.b | ⊢ 𝐵 = ( Base ‘ 𝐴 ) | |
| 3 | mattposvs.k | ⊢ 𝐾 = ( Base ‘ 𝑅 ) | |
| 4 | mattposvs.v | ⊢ · = ( ·𝑠 ‘ 𝐴 ) | |
| 5 | 1 2 | matrcl | ⊢ ( 𝑌 ∈ 𝐵 → ( 𝑁 ∈ Fin ∧ 𝑅 ∈ V ) ) |
| 6 | 5 | simpld | ⊢ ( 𝑌 ∈ 𝐵 → 𝑁 ∈ Fin ) |
| 7 | sqxpexg | ⊢ ( 𝑁 ∈ Fin → ( 𝑁 × 𝑁 ) ∈ V ) | |
| 8 | 6 7 | syl | ⊢ ( 𝑌 ∈ 𝐵 → ( 𝑁 × 𝑁 ) ∈ V ) |
| 9 | snex | ⊢ { 𝑋 } ∈ V | |
| 10 | xpexg | ⊢ ( ( ( 𝑁 × 𝑁 ) ∈ V ∧ { 𝑋 } ∈ V ) → ( ( 𝑁 × 𝑁 ) × { 𝑋 } ) ∈ V ) | |
| 11 | 8 9 10 | sylancl | ⊢ ( 𝑌 ∈ 𝐵 → ( ( 𝑁 × 𝑁 ) × { 𝑋 } ) ∈ V ) |
| 12 | oftpos | ⊢ ( ( ( ( 𝑁 × 𝑁 ) × { 𝑋 } ) ∈ V ∧ 𝑌 ∈ 𝐵 ) → tpos ( ( ( 𝑁 × 𝑁 ) × { 𝑋 } ) ∘f ( .r ‘ 𝑅 ) 𝑌 ) = ( tpos ( ( 𝑁 × 𝑁 ) × { 𝑋 } ) ∘f ( .r ‘ 𝑅 ) tpos 𝑌 ) ) | |
| 13 | 11 12 | mpancom | ⊢ ( 𝑌 ∈ 𝐵 → tpos ( ( ( 𝑁 × 𝑁 ) × { 𝑋 } ) ∘f ( .r ‘ 𝑅 ) 𝑌 ) = ( tpos ( ( 𝑁 × 𝑁 ) × { 𝑋 } ) ∘f ( .r ‘ 𝑅 ) tpos 𝑌 ) ) |
| 14 | tposconst | ⊢ tpos ( ( 𝑁 × 𝑁 ) × { 𝑋 } ) = ( ( 𝑁 × 𝑁 ) × { 𝑋 } ) | |
| 15 | 14 | oveq1i | ⊢ ( tpos ( ( 𝑁 × 𝑁 ) × { 𝑋 } ) ∘f ( .r ‘ 𝑅 ) tpos 𝑌 ) = ( ( ( 𝑁 × 𝑁 ) × { 𝑋 } ) ∘f ( .r ‘ 𝑅 ) tpos 𝑌 ) |
| 16 | 13 15 | eqtrdi | ⊢ ( 𝑌 ∈ 𝐵 → tpos ( ( ( 𝑁 × 𝑁 ) × { 𝑋 } ) ∘f ( .r ‘ 𝑅 ) 𝑌 ) = ( ( ( 𝑁 × 𝑁 ) × { 𝑋 } ) ∘f ( .r ‘ 𝑅 ) tpos 𝑌 ) ) |
| 17 | 16 | adantl | ⊢ ( ( 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵 ) → tpos ( ( ( 𝑁 × 𝑁 ) × { 𝑋 } ) ∘f ( .r ‘ 𝑅 ) 𝑌 ) = ( ( ( 𝑁 × 𝑁 ) × { 𝑋 } ) ∘f ( .r ‘ 𝑅 ) tpos 𝑌 ) ) |
| 18 | eqid | ⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) | |
| 19 | eqid | ⊢ ( 𝑁 × 𝑁 ) = ( 𝑁 × 𝑁 ) | |
| 20 | 1 2 3 4 18 19 | matvsca2 | ⊢ ( ( 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 · 𝑌 ) = ( ( ( 𝑁 × 𝑁 ) × { 𝑋 } ) ∘f ( .r ‘ 𝑅 ) 𝑌 ) ) |
| 21 | 20 | tposeqd | ⊢ ( ( 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵 ) → tpos ( 𝑋 · 𝑌 ) = tpos ( ( ( 𝑁 × 𝑁 ) × { 𝑋 } ) ∘f ( .r ‘ 𝑅 ) 𝑌 ) ) |
| 22 | 1 2 | mattposcl | ⊢ ( 𝑌 ∈ 𝐵 → tpos 𝑌 ∈ 𝐵 ) |
| 23 | 1 2 3 4 18 19 | matvsca2 | ⊢ ( ( 𝑋 ∈ 𝐾 ∧ tpos 𝑌 ∈ 𝐵 ) → ( 𝑋 · tpos 𝑌 ) = ( ( ( 𝑁 × 𝑁 ) × { 𝑋 } ) ∘f ( .r ‘ 𝑅 ) tpos 𝑌 ) ) |
| 24 | 22 23 | sylan2 | ⊢ ( ( 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 · tpos 𝑌 ) = ( ( ( 𝑁 × 𝑁 ) × { 𝑋 } ) ∘f ( .r ‘ 𝑅 ) tpos 𝑌 ) ) |
| 25 | 17 21 24 | 3eqtr4d | ⊢ ( ( 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵 ) → tpos ( 𝑋 · 𝑌 ) = ( 𝑋 · tpos 𝑌 ) ) |