This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The transposition of the identity matrix is the identity matrix. (Contributed by Stefan O'Rear, 17-Jul-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mattpos1.a | ⊢ 𝐴 = ( 𝑁 Mat 𝑅 ) | |
| mattpos1.o | ⊢ 1 = ( 1r ‘ 𝐴 ) | ||
| Assertion | mattpos1 | ⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → tpos 1 = 1 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mattpos1.a | ⊢ 𝐴 = ( 𝑁 Mat 𝑅 ) | |
| 2 | mattpos1.o | ⊢ 1 = ( 1r ‘ 𝐴 ) | |
| 3 | eqid | ⊢ ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝑗 , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) ) = ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝑗 , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) ) | |
| 4 | 3 | tposmpo | ⊢ tpos ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝑗 , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) ) = ( 𝑗 ∈ 𝑁 , 𝑖 ∈ 𝑁 ↦ if ( 𝑖 = 𝑗 , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) ) |
| 5 | eqid | ⊢ ( 1r ‘ 𝑅 ) = ( 1r ‘ 𝑅 ) | |
| 6 | eqid | ⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) | |
| 7 | 1 5 6 | mat1 | ⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → ( 1r ‘ 𝐴 ) = ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝑗 , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) ) ) |
| 8 | 7 | tposeqd | ⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → tpos ( 1r ‘ 𝐴 ) = tpos ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝑗 , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) ) ) |
| 9 | 1 5 6 | mat1 | ⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → ( 1r ‘ 𝐴 ) = ( 𝑗 ∈ 𝑁 , 𝑖 ∈ 𝑁 ↦ if ( 𝑗 = 𝑖 , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) ) ) |
| 10 | equcom | ⊢ ( 𝑗 = 𝑖 ↔ 𝑖 = 𝑗 ) | |
| 11 | 10 | a1i | ⊢ ( ( 𝑗 ∈ 𝑁 ∧ 𝑖 ∈ 𝑁 ) → ( 𝑗 = 𝑖 ↔ 𝑖 = 𝑗 ) ) |
| 12 | 11 | ifbid | ⊢ ( ( 𝑗 ∈ 𝑁 ∧ 𝑖 ∈ 𝑁 ) → if ( 𝑗 = 𝑖 , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) = if ( 𝑖 = 𝑗 , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) ) |
| 13 | 12 | mpoeq3ia | ⊢ ( 𝑗 ∈ 𝑁 , 𝑖 ∈ 𝑁 ↦ if ( 𝑗 = 𝑖 , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) ) = ( 𝑗 ∈ 𝑁 , 𝑖 ∈ 𝑁 ↦ if ( 𝑖 = 𝑗 , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) ) |
| 14 | 9 13 | eqtrdi | ⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → ( 1r ‘ 𝐴 ) = ( 𝑗 ∈ 𝑁 , 𝑖 ∈ 𝑁 ↦ if ( 𝑖 = 𝑗 , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) ) ) |
| 15 | 4 8 14 | 3eqtr4a | ⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → tpos ( 1r ‘ 𝐴 ) = ( 1r ‘ 𝐴 ) ) |
| 16 | 2 | tposeqi | ⊢ tpos 1 = tpos ( 1r ‘ 𝐴 ) |
| 17 | 15 16 2 | 3eqtr4g | ⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → tpos 1 = 1 ) |