This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Scalar multiplication in the matrix ring is cell-wise. (Contributed by Stefan O'Rear, 5-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | matvsca2.a | ⊢ 𝐴 = ( 𝑁 Mat 𝑅 ) | |
| matvsca2.b | ⊢ 𝐵 = ( Base ‘ 𝐴 ) | ||
| matvsca2.k | ⊢ 𝐾 = ( Base ‘ 𝑅 ) | ||
| matvsca2.v | ⊢ · = ( ·𝑠 ‘ 𝐴 ) | ||
| matvsca2.t | ⊢ × = ( .r ‘ 𝑅 ) | ||
| matvsca2.c | ⊢ 𝐶 = ( 𝑁 × 𝑁 ) | ||
| Assertion | matvsca2 | ⊢ ( ( 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 · 𝑌 ) = ( ( 𝐶 × { 𝑋 } ) ∘f × 𝑌 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | matvsca2.a | ⊢ 𝐴 = ( 𝑁 Mat 𝑅 ) | |
| 2 | matvsca2.b | ⊢ 𝐵 = ( Base ‘ 𝐴 ) | |
| 3 | matvsca2.k | ⊢ 𝐾 = ( Base ‘ 𝑅 ) | |
| 4 | matvsca2.v | ⊢ · = ( ·𝑠 ‘ 𝐴 ) | |
| 5 | matvsca2.t | ⊢ × = ( .r ‘ 𝑅 ) | |
| 6 | matvsca2.c | ⊢ 𝐶 = ( 𝑁 × 𝑁 ) | |
| 7 | 1 2 | matrcl | ⊢ ( 𝑌 ∈ 𝐵 → ( 𝑁 ∈ Fin ∧ 𝑅 ∈ V ) ) |
| 8 | 7 | adantl | ⊢ ( ( 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑁 ∈ Fin ∧ 𝑅 ∈ V ) ) |
| 9 | eqid | ⊢ ( 𝑅 freeLMod ( 𝑁 × 𝑁 ) ) = ( 𝑅 freeLMod ( 𝑁 × 𝑁 ) ) | |
| 10 | 1 9 | matvsca | ⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ V ) → ( ·𝑠 ‘ ( 𝑅 freeLMod ( 𝑁 × 𝑁 ) ) ) = ( ·𝑠 ‘ 𝐴 ) ) |
| 11 | 8 10 | syl | ⊢ ( ( 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵 ) → ( ·𝑠 ‘ ( 𝑅 freeLMod ( 𝑁 × 𝑁 ) ) ) = ( ·𝑠 ‘ 𝐴 ) ) |
| 12 | 11 4 | eqtr4di | ⊢ ( ( 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵 ) → ( ·𝑠 ‘ ( 𝑅 freeLMod ( 𝑁 × 𝑁 ) ) ) = · ) |
| 13 | 12 | oveqd | ⊢ ( ( 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 ( ·𝑠 ‘ ( 𝑅 freeLMod ( 𝑁 × 𝑁 ) ) ) 𝑌 ) = ( 𝑋 · 𝑌 ) ) |
| 14 | eqid | ⊢ ( Base ‘ ( 𝑅 freeLMod ( 𝑁 × 𝑁 ) ) ) = ( Base ‘ ( 𝑅 freeLMod ( 𝑁 × 𝑁 ) ) ) | |
| 15 | 8 | simpld | ⊢ ( ( 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵 ) → 𝑁 ∈ Fin ) |
| 16 | xpfi | ⊢ ( ( 𝑁 ∈ Fin ∧ 𝑁 ∈ Fin ) → ( 𝑁 × 𝑁 ) ∈ Fin ) | |
| 17 | 15 15 16 | syl2anc | ⊢ ( ( 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑁 × 𝑁 ) ∈ Fin ) |
| 18 | simpl | ⊢ ( ( 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵 ) → 𝑋 ∈ 𝐾 ) | |
| 19 | simpr | ⊢ ( ( 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵 ) → 𝑌 ∈ 𝐵 ) | |
| 20 | 1 9 | matbas | ⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ V ) → ( Base ‘ ( 𝑅 freeLMod ( 𝑁 × 𝑁 ) ) ) = ( Base ‘ 𝐴 ) ) |
| 21 | 8 20 | syl | ⊢ ( ( 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵 ) → ( Base ‘ ( 𝑅 freeLMod ( 𝑁 × 𝑁 ) ) ) = ( Base ‘ 𝐴 ) ) |
| 22 | 21 2 | eqtr4di | ⊢ ( ( 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵 ) → ( Base ‘ ( 𝑅 freeLMod ( 𝑁 × 𝑁 ) ) ) = 𝐵 ) |
| 23 | 19 22 | eleqtrrd | ⊢ ( ( 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵 ) → 𝑌 ∈ ( Base ‘ ( 𝑅 freeLMod ( 𝑁 × 𝑁 ) ) ) ) |
| 24 | eqid | ⊢ ( ·𝑠 ‘ ( 𝑅 freeLMod ( 𝑁 × 𝑁 ) ) ) = ( ·𝑠 ‘ ( 𝑅 freeLMod ( 𝑁 × 𝑁 ) ) ) | |
| 25 | 9 14 3 17 18 23 24 5 | frlmvscafval | ⊢ ( ( 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 ( ·𝑠 ‘ ( 𝑅 freeLMod ( 𝑁 × 𝑁 ) ) ) 𝑌 ) = ( ( ( 𝑁 × 𝑁 ) × { 𝑋 } ) ∘f × 𝑌 ) ) |
| 26 | 6 | xpeq1i | ⊢ ( 𝐶 × { 𝑋 } ) = ( ( 𝑁 × 𝑁 ) × { 𝑋 } ) |
| 27 | 26 | oveq1i | ⊢ ( ( 𝐶 × { 𝑋 } ) ∘f × 𝑌 ) = ( ( ( 𝑁 × 𝑁 ) × { 𝑋 } ) ∘f × 𝑌 ) |
| 28 | 25 27 | eqtr4di | ⊢ ( ( 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 ( ·𝑠 ‘ ( 𝑅 freeLMod ( 𝑁 × 𝑁 ) ) ) 𝑌 ) = ( ( 𝐶 × { 𝑋 } ) ∘f × 𝑌 ) ) |
| 29 | 13 28 | eqtr3d | ⊢ ( ( 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 · 𝑌 ) = ( ( 𝐶 × { 𝑋 } ) ∘f × 𝑌 ) ) |