This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The transposition of a matrix multiplied with a scalar equals the transposed matrix multiplied with the scalar, see also the statement in Lang p. 505. (Contributed by Stefan O'Rear, 17-Jul-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mattposvs.a | |- A = ( N Mat R ) |
|
| mattposvs.b | |- B = ( Base ` A ) |
||
| mattposvs.k | |- K = ( Base ` R ) |
||
| mattposvs.v | |- .x. = ( .s ` A ) |
||
| Assertion | mattposvs | |- ( ( X e. K /\ Y e. B ) -> tpos ( X .x. Y ) = ( X .x. tpos Y ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mattposvs.a | |- A = ( N Mat R ) |
|
| 2 | mattposvs.b | |- B = ( Base ` A ) |
|
| 3 | mattposvs.k | |- K = ( Base ` R ) |
|
| 4 | mattposvs.v | |- .x. = ( .s ` A ) |
|
| 5 | 1 2 | matrcl | |- ( Y e. B -> ( N e. Fin /\ R e. _V ) ) |
| 6 | 5 | simpld | |- ( Y e. B -> N e. Fin ) |
| 7 | sqxpexg | |- ( N e. Fin -> ( N X. N ) e. _V ) |
|
| 8 | 6 7 | syl | |- ( Y e. B -> ( N X. N ) e. _V ) |
| 9 | snex | |- { X } e. _V |
|
| 10 | xpexg | |- ( ( ( N X. N ) e. _V /\ { X } e. _V ) -> ( ( N X. N ) X. { X } ) e. _V ) |
|
| 11 | 8 9 10 | sylancl | |- ( Y e. B -> ( ( N X. N ) X. { X } ) e. _V ) |
| 12 | oftpos | |- ( ( ( ( N X. N ) X. { X } ) e. _V /\ Y e. B ) -> tpos ( ( ( N X. N ) X. { X } ) oF ( .r ` R ) Y ) = ( tpos ( ( N X. N ) X. { X } ) oF ( .r ` R ) tpos Y ) ) |
|
| 13 | 11 12 | mpancom | |- ( Y e. B -> tpos ( ( ( N X. N ) X. { X } ) oF ( .r ` R ) Y ) = ( tpos ( ( N X. N ) X. { X } ) oF ( .r ` R ) tpos Y ) ) |
| 14 | tposconst | |- tpos ( ( N X. N ) X. { X } ) = ( ( N X. N ) X. { X } ) |
|
| 15 | 14 | oveq1i | |- ( tpos ( ( N X. N ) X. { X } ) oF ( .r ` R ) tpos Y ) = ( ( ( N X. N ) X. { X } ) oF ( .r ` R ) tpos Y ) |
| 16 | 13 15 | eqtrdi | |- ( Y e. B -> tpos ( ( ( N X. N ) X. { X } ) oF ( .r ` R ) Y ) = ( ( ( N X. N ) X. { X } ) oF ( .r ` R ) tpos Y ) ) |
| 17 | 16 | adantl | |- ( ( X e. K /\ Y e. B ) -> tpos ( ( ( N X. N ) X. { X } ) oF ( .r ` R ) Y ) = ( ( ( N X. N ) X. { X } ) oF ( .r ` R ) tpos Y ) ) |
| 18 | eqid | |- ( .r ` R ) = ( .r ` R ) |
|
| 19 | eqid | |- ( N X. N ) = ( N X. N ) |
|
| 20 | 1 2 3 4 18 19 | matvsca2 | |- ( ( X e. K /\ Y e. B ) -> ( X .x. Y ) = ( ( ( N X. N ) X. { X } ) oF ( .r ` R ) Y ) ) |
| 21 | 20 | tposeqd | |- ( ( X e. K /\ Y e. B ) -> tpos ( X .x. Y ) = tpos ( ( ( N X. N ) X. { X } ) oF ( .r ` R ) Y ) ) |
| 22 | 1 2 | mattposcl | |- ( Y e. B -> tpos Y e. B ) |
| 23 | 1 2 3 4 18 19 | matvsca2 | |- ( ( X e. K /\ tpos Y e. B ) -> ( X .x. tpos Y ) = ( ( ( N X. N ) X. { X } ) oF ( .r ` R ) tpos Y ) ) |
| 24 | 22 23 | sylan2 | |- ( ( X e. K /\ Y e. B ) -> ( X .x. tpos Y ) = ( ( ( N X. N ) X. { X } ) oF ( .r ` R ) tpos Y ) ) |
| 25 | 17 21 24 | 3eqtr4d | |- ( ( X e. K /\ Y e. B ) -> tpos ( X .x. Y ) = ( X .x. tpos Y ) ) |