This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The transpose of a square matrix is a square matrix of the same size. (Contributed by SO, 9-Jul-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mattposcl.a | ⊢ 𝐴 = ( 𝑁 Mat 𝑅 ) | |
| mattposcl.b | ⊢ 𝐵 = ( Base ‘ 𝐴 ) | ||
| Assertion | mattposcl | ⊢ ( 𝑀 ∈ 𝐵 → tpos 𝑀 ∈ 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mattposcl.a | ⊢ 𝐴 = ( 𝑁 Mat 𝑅 ) | |
| 2 | mattposcl.b | ⊢ 𝐵 = ( Base ‘ 𝐴 ) | |
| 3 | eqid | ⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) | |
| 4 | 1 3 2 | matbas2i | ⊢ ( 𝑀 ∈ 𝐵 → 𝑀 ∈ ( ( Base ‘ 𝑅 ) ↑m ( 𝑁 × 𝑁 ) ) ) |
| 5 | elmapi | ⊢ ( 𝑀 ∈ ( ( Base ‘ 𝑅 ) ↑m ( 𝑁 × 𝑁 ) ) → 𝑀 : ( 𝑁 × 𝑁 ) ⟶ ( Base ‘ 𝑅 ) ) | |
| 6 | tposf | ⊢ ( 𝑀 : ( 𝑁 × 𝑁 ) ⟶ ( Base ‘ 𝑅 ) → tpos 𝑀 : ( 𝑁 × 𝑁 ) ⟶ ( Base ‘ 𝑅 ) ) | |
| 7 | 4 5 6 | 3syl | ⊢ ( 𝑀 ∈ 𝐵 → tpos 𝑀 : ( 𝑁 × 𝑁 ) ⟶ ( Base ‘ 𝑅 ) ) |
| 8 | fvex | ⊢ ( Base ‘ 𝑅 ) ∈ V | |
| 9 | 1 2 | matrcl | ⊢ ( 𝑀 ∈ 𝐵 → ( 𝑁 ∈ Fin ∧ 𝑅 ∈ V ) ) |
| 10 | 9 | simpld | ⊢ ( 𝑀 ∈ 𝐵 → 𝑁 ∈ Fin ) |
| 11 | xpfi | ⊢ ( ( 𝑁 ∈ Fin ∧ 𝑁 ∈ Fin ) → ( 𝑁 × 𝑁 ) ∈ Fin ) | |
| 12 | 11 | anidms | ⊢ ( 𝑁 ∈ Fin → ( 𝑁 × 𝑁 ) ∈ Fin ) |
| 13 | 10 12 | syl | ⊢ ( 𝑀 ∈ 𝐵 → ( 𝑁 × 𝑁 ) ∈ Fin ) |
| 14 | elmapg | ⊢ ( ( ( Base ‘ 𝑅 ) ∈ V ∧ ( 𝑁 × 𝑁 ) ∈ Fin ) → ( tpos 𝑀 ∈ ( ( Base ‘ 𝑅 ) ↑m ( 𝑁 × 𝑁 ) ) ↔ tpos 𝑀 : ( 𝑁 × 𝑁 ) ⟶ ( Base ‘ 𝑅 ) ) ) | |
| 15 | 8 13 14 | sylancr | ⊢ ( 𝑀 ∈ 𝐵 → ( tpos 𝑀 ∈ ( ( Base ‘ 𝑅 ) ↑m ( 𝑁 × 𝑁 ) ) ↔ tpos 𝑀 : ( 𝑁 × 𝑁 ) ⟶ ( Base ‘ 𝑅 ) ) ) |
| 16 | 7 15 | mpbird | ⊢ ( 𝑀 ∈ 𝐵 → tpos 𝑀 ∈ ( ( Base ‘ 𝑅 ) ↑m ( 𝑁 × 𝑁 ) ) ) |
| 17 | 1 3 | matbas2 | ⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ V ) → ( ( Base ‘ 𝑅 ) ↑m ( 𝑁 × 𝑁 ) ) = ( Base ‘ 𝐴 ) ) |
| 18 | 9 17 | syl | ⊢ ( 𝑀 ∈ 𝐵 → ( ( Base ‘ 𝑅 ) ↑m ( 𝑁 × 𝑁 ) ) = ( Base ‘ 𝐴 ) ) |
| 19 | 18 2 | eqtr4di | ⊢ ( 𝑀 ∈ 𝐵 → ( ( Base ‘ 𝑅 ) ↑m ( 𝑁 × 𝑁 ) ) = 𝐵 ) |
| 20 | 16 19 | eleqtrd | ⊢ ( 𝑀 ∈ 𝐵 → tpos 𝑀 ∈ 𝐵 ) |