This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The transposition of the value of a function operation for two functions is the value of the function operation for the two functions transposed. (Contributed by Stefan O'Rear, 17-Jul-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | oftpos | ⊢ ( ( 𝐹 ∈ 𝑉 ∧ 𝐺 ∈ 𝑊 ) → tpos ( 𝐹 ∘f 𝑅 𝐺 ) = ( tpos 𝐹 ∘f 𝑅 tpos 𝐺 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex | ⊢ ( 𝐹 ∈ 𝑉 → 𝐹 ∈ V ) | |
| 2 | 1 | adantr | ⊢ ( ( 𝐹 ∈ 𝑉 ∧ 𝐺 ∈ 𝑊 ) → 𝐹 ∈ V ) |
| 3 | elex | ⊢ ( 𝐺 ∈ 𝑊 → 𝐺 ∈ V ) | |
| 4 | 3 | adantl | ⊢ ( ( 𝐹 ∈ 𝑉 ∧ 𝐺 ∈ 𝑊 ) → 𝐺 ∈ V ) |
| 5 | funmpt | ⊢ Fun ( 𝑥 ∈ ( ( V × V ) ∪ { ∅ } ) ↦ ∪ ◡ { 𝑥 } ) | |
| 6 | 5 | a1i | ⊢ ( ( 𝐹 ∈ 𝑉 ∧ 𝐺 ∈ 𝑊 ) → Fun ( 𝑥 ∈ ( ( V × V ) ∪ { ∅ } ) ↦ ∪ ◡ { 𝑥 } ) ) |
| 7 | dftpos4 | ⊢ tpos 𝐹 = ( 𝐹 ∘ ( 𝑥 ∈ ( ( V × V ) ∪ { ∅ } ) ↦ ∪ ◡ { 𝑥 } ) ) | |
| 8 | tposexg | ⊢ ( 𝐹 ∈ 𝑉 → tpos 𝐹 ∈ V ) | |
| 9 | 8 | adantr | ⊢ ( ( 𝐹 ∈ 𝑉 ∧ 𝐺 ∈ 𝑊 ) → tpos 𝐹 ∈ V ) |
| 10 | 7 9 | eqeltrrid | ⊢ ( ( 𝐹 ∈ 𝑉 ∧ 𝐺 ∈ 𝑊 ) → ( 𝐹 ∘ ( 𝑥 ∈ ( ( V × V ) ∪ { ∅ } ) ↦ ∪ ◡ { 𝑥 } ) ) ∈ V ) |
| 11 | dftpos4 | ⊢ tpos 𝐺 = ( 𝐺 ∘ ( 𝑥 ∈ ( ( V × V ) ∪ { ∅ } ) ↦ ∪ ◡ { 𝑥 } ) ) | |
| 12 | tposexg | ⊢ ( 𝐺 ∈ 𝑊 → tpos 𝐺 ∈ V ) | |
| 13 | 12 | adantl | ⊢ ( ( 𝐹 ∈ 𝑉 ∧ 𝐺 ∈ 𝑊 ) → tpos 𝐺 ∈ V ) |
| 14 | 11 13 | eqeltrrid | ⊢ ( ( 𝐹 ∈ 𝑉 ∧ 𝐺 ∈ 𝑊 ) → ( 𝐺 ∘ ( 𝑥 ∈ ( ( V × V ) ∪ { ∅ } ) ↦ ∪ ◡ { 𝑥 } ) ) ∈ V ) |
| 15 | ofco2 | ⊢ ( ( ( 𝐹 ∈ V ∧ 𝐺 ∈ V ) ∧ ( Fun ( 𝑥 ∈ ( ( V × V ) ∪ { ∅ } ) ↦ ∪ ◡ { 𝑥 } ) ∧ ( 𝐹 ∘ ( 𝑥 ∈ ( ( V × V ) ∪ { ∅ } ) ↦ ∪ ◡ { 𝑥 } ) ) ∈ V ∧ ( 𝐺 ∘ ( 𝑥 ∈ ( ( V × V ) ∪ { ∅ } ) ↦ ∪ ◡ { 𝑥 } ) ) ∈ V ) ) → ( ( 𝐹 ∘f 𝑅 𝐺 ) ∘ ( 𝑥 ∈ ( ( V × V ) ∪ { ∅ } ) ↦ ∪ ◡ { 𝑥 } ) ) = ( ( 𝐹 ∘ ( 𝑥 ∈ ( ( V × V ) ∪ { ∅ } ) ↦ ∪ ◡ { 𝑥 } ) ) ∘f 𝑅 ( 𝐺 ∘ ( 𝑥 ∈ ( ( V × V ) ∪ { ∅ } ) ↦ ∪ ◡ { 𝑥 } ) ) ) ) | |
| 16 | 2 4 6 10 14 15 | syl23anc | ⊢ ( ( 𝐹 ∈ 𝑉 ∧ 𝐺 ∈ 𝑊 ) → ( ( 𝐹 ∘f 𝑅 𝐺 ) ∘ ( 𝑥 ∈ ( ( V × V ) ∪ { ∅ } ) ↦ ∪ ◡ { 𝑥 } ) ) = ( ( 𝐹 ∘ ( 𝑥 ∈ ( ( V × V ) ∪ { ∅ } ) ↦ ∪ ◡ { 𝑥 } ) ) ∘f 𝑅 ( 𝐺 ∘ ( 𝑥 ∈ ( ( V × V ) ∪ { ∅ } ) ↦ ∪ ◡ { 𝑥 } ) ) ) ) |
| 17 | dftpos4 | ⊢ tpos ( 𝐹 ∘f 𝑅 𝐺 ) = ( ( 𝐹 ∘f 𝑅 𝐺 ) ∘ ( 𝑥 ∈ ( ( V × V ) ∪ { ∅ } ) ↦ ∪ ◡ { 𝑥 } ) ) | |
| 18 | 7 11 | oveq12i | ⊢ ( tpos 𝐹 ∘f 𝑅 tpos 𝐺 ) = ( ( 𝐹 ∘ ( 𝑥 ∈ ( ( V × V ) ∪ { ∅ } ) ↦ ∪ ◡ { 𝑥 } ) ) ∘f 𝑅 ( 𝐺 ∘ ( 𝑥 ∈ ( ( V × V ) ∪ { ∅ } ) ↦ ∪ ◡ { 𝑥 } ) ) ) |
| 19 | 16 17 18 | 3eqtr4g | ⊢ ( ( 𝐹 ∈ 𝑉 ∧ 𝐺 ∈ 𝑊 ) → tpos ( 𝐹 ∘f 𝑅 𝐺 ) = ( tpos 𝐹 ∘f 𝑅 tpos 𝐺 ) ) |