This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: There is a group homomorphism from the additive group of a ring to the additive group of the ring of matrices with dimension 1 over this ring. (Contributed by AV, 22-Dec-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mat1rhmval.k | ⊢ 𝐾 = ( Base ‘ 𝑅 ) | |
| mat1rhmval.a | ⊢ 𝐴 = ( { 𝐸 } Mat 𝑅 ) | ||
| mat1rhmval.b | ⊢ 𝐵 = ( Base ‘ 𝐴 ) | ||
| mat1rhmval.o | ⊢ 𝑂 = 〈 𝐸 , 𝐸 〉 | ||
| mat1rhmval.f | ⊢ 𝐹 = ( 𝑥 ∈ 𝐾 ↦ { 〈 𝑂 , 𝑥 〉 } ) | ||
| Assertion | mat1ghm | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ) → 𝐹 ∈ ( 𝑅 GrpHom 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mat1rhmval.k | ⊢ 𝐾 = ( Base ‘ 𝑅 ) | |
| 2 | mat1rhmval.a | ⊢ 𝐴 = ( { 𝐸 } Mat 𝑅 ) | |
| 3 | mat1rhmval.b | ⊢ 𝐵 = ( Base ‘ 𝐴 ) | |
| 4 | mat1rhmval.o | ⊢ 𝑂 = 〈 𝐸 , 𝐸 〉 | |
| 5 | mat1rhmval.f | ⊢ 𝐹 = ( 𝑥 ∈ 𝐾 ↦ { 〈 𝑂 , 𝑥 〉 } ) | |
| 6 | eqid | ⊢ ( +g ‘ 𝑅 ) = ( +g ‘ 𝑅 ) | |
| 7 | eqid | ⊢ ( +g ‘ 𝐴 ) = ( +g ‘ 𝐴 ) | |
| 8 | ringgrp | ⊢ ( 𝑅 ∈ Ring → 𝑅 ∈ Grp ) | |
| 9 | 8 | adantr | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ) → 𝑅 ∈ Grp ) |
| 10 | snfi | ⊢ { 𝐸 } ∈ Fin | |
| 11 | simpl | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ) → 𝑅 ∈ Ring ) | |
| 12 | 2 | matgrp | ⊢ ( ( { 𝐸 } ∈ Fin ∧ 𝑅 ∈ Ring ) → 𝐴 ∈ Grp ) |
| 13 | 10 11 12 | sylancr | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ) → 𝐴 ∈ Grp ) |
| 14 | 1 2 3 4 5 | mat1f | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ) → 𝐹 : 𝐾 ⟶ 𝐵 ) |
| 15 | 11 | adantr | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ) ∧ ( 𝑤 ∈ 𝐾 ∧ 𝑦 ∈ 𝐾 ) ) → 𝑅 ∈ Ring ) |
| 16 | simpr | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ) → 𝐸 ∈ 𝑉 ) | |
| 17 | 16 | adantr | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ) ∧ ( 𝑤 ∈ 𝐾 ∧ 𝑦 ∈ 𝐾 ) ) → 𝐸 ∈ 𝑉 ) |
| 18 | simpl | ⊢ ( ( 𝑤 ∈ 𝐾 ∧ 𝑦 ∈ 𝐾 ) → 𝑤 ∈ 𝐾 ) | |
| 19 | 18 | adantl | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ) ∧ ( 𝑤 ∈ 𝐾 ∧ 𝑦 ∈ 𝐾 ) ) → 𝑤 ∈ 𝐾 ) |
| 20 | 1 2 3 4 5 | mat1rhmelval | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ∧ 𝑤 ∈ 𝐾 ) → ( 𝐸 ( 𝐹 ‘ 𝑤 ) 𝐸 ) = 𝑤 ) |
| 21 | 15 17 19 20 | syl3anc | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ) ∧ ( 𝑤 ∈ 𝐾 ∧ 𝑦 ∈ 𝐾 ) ) → ( 𝐸 ( 𝐹 ‘ 𝑤 ) 𝐸 ) = 𝑤 ) |
| 22 | simpr | ⊢ ( ( 𝑤 ∈ 𝐾 ∧ 𝑦 ∈ 𝐾 ) → 𝑦 ∈ 𝐾 ) | |
| 23 | 22 | adantl | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ) ∧ ( 𝑤 ∈ 𝐾 ∧ 𝑦 ∈ 𝐾 ) ) → 𝑦 ∈ 𝐾 ) |
| 24 | 1 2 3 4 5 | mat1rhmelval | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ∧ 𝑦 ∈ 𝐾 ) → ( 𝐸 ( 𝐹 ‘ 𝑦 ) 𝐸 ) = 𝑦 ) |
| 25 | 15 17 23 24 | syl3anc | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ) ∧ ( 𝑤 ∈ 𝐾 ∧ 𝑦 ∈ 𝐾 ) ) → ( 𝐸 ( 𝐹 ‘ 𝑦 ) 𝐸 ) = 𝑦 ) |
| 26 | 21 25 | oveq12d | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ) ∧ ( 𝑤 ∈ 𝐾 ∧ 𝑦 ∈ 𝐾 ) ) → ( ( 𝐸 ( 𝐹 ‘ 𝑤 ) 𝐸 ) ( +g ‘ 𝑅 ) ( 𝐸 ( 𝐹 ‘ 𝑦 ) 𝐸 ) ) = ( 𝑤 ( +g ‘ 𝑅 ) 𝑦 ) ) |
| 27 | 1 2 3 4 5 | mat1rhmcl | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ∧ 𝑤 ∈ 𝐾 ) → ( 𝐹 ‘ 𝑤 ) ∈ 𝐵 ) |
| 28 | 15 17 19 27 | syl3anc | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ) ∧ ( 𝑤 ∈ 𝐾 ∧ 𝑦 ∈ 𝐾 ) ) → ( 𝐹 ‘ 𝑤 ) ∈ 𝐵 ) |
| 29 | 1 2 3 4 5 | mat1rhmcl | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ∧ 𝑦 ∈ 𝐾 ) → ( 𝐹 ‘ 𝑦 ) ∈ 𝐵 ) |
| 30 | 15 17 23 29 | syl3anc | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ) ∧ ( 𝑤 ∈ 𝐾 ∧ 𝑦 ∈ 𝐾 ) ) → ( 𝐹 ‘ 𝑦 ) ∈ 𝐵 ) |
| 31 | snidg | ⊢ ( 𝐸 ∈ 𝑉 → 𝐸 ∈ { 𝐸 } ) | |
| 32 | 31 31 | jca | ⊢ ( 𝐸 ∈ 𝑉 → ( 𝐸 ∈ { 𝐸 } ∧ 𝐸 ∈ { 𝐸 } ) ) |
| 33 | 32 | adantl | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ) → ( 𝐸 ∈ { 𝐸 } ∧ 𝐸 ∈ { 𝐸 } ) ) |
| 34 | 33 | adantr | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ) ∧ ( 𝑤 ∈ 𝐾 ∧ 𝑦 ∈ 𝐾 ) ) → ( 𝐸 ∈ { 𝐸 } ∧ 𝐸 ∈ { 𝐸 } ) ) |
| 35 | 2 3 7 6 | matplusgcell | ⊢ ( ( ( ( 𝐹 ‘ 𝑤 ) ∈ 𝐵 ∧ ( 𝐹 ‘ 𝑦 ) ∈ 𝐵 ) ∧ ( 𝐸 ∈ { 𝐸 } ∧ 𝐸 ∈ { 𝐸 } ) ) → ( 𝐸 ( ( 𝐹 ‘ 𝑤 ) ( +g ‘ 𝐴 ) ( 𝐹 ‘ 𝑦 ) ) 𝐸 ) = ( ( 𝐸 ( 𝐹 ‘ 𝑤 ) 𝐸 ) ( +g ‘ 𝑅 ) ( 𝐸 ( 𝐹 ‘ 𝑦 ) 𝐸 ) ) ) |
| 36 | 28 30 34 35 | syl21anc | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ) ∧ ( 𝑤 ∈ 𝐾 ∧ 𝑦 ∈ 𝐾 ) ) → ( 𝐸 ( ( 𝐹 ‘ 𝑤 ) ( +g ‘ 𝐴 ) ( 𝐹 ‘ 𝑦 ) ) 𝐸 ) = ( ( 𝐸 ( 𝐹 ‘ 𝑤 ) 𝐸 ) ( +g ‘ 𝑅 ) ( 𝐸 ( 𝐹 ‘ 𝑦 ) 𝐸 ) ) ) |
| 37 | 1 6 | ringacl | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑤 ∈ 𝐾 ∧ 𝑦 ∈ 𝐾 ) → ( 𝑤 ( +g ‘ 𝑅 ) 𝑦 ) ∈ 𝐾 ) |
| 38 | 15 19 23 37 | syl3anc | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ) ∧ ( 𝑤 ∈ 𝐾 ∧ 𝑦 ∈ 𝐾 ) ) → ( 𝑤 ( +g ‘ 𝑅 ) 𝑦 ) ∈ 𝐾 ) |
| 39 | 1 2 3 4 5 | mat1rhmelval | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ∧ ( 𝑤 ( +g ‘ 𝑅 ) 𝑦 ) ∈ 𝐾 ) → ( 𝐸 ( 𝐹 ‘ ( 𝑤 ( +g ‘ 𝑅 ) 𝑦 ) ) 𝐸 ) = ( 𝑤 ( +g ‘ 𝑅 ) 𝑦 ) ) |
| 40 | 15 17 38 39 | syl3anc | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ) ∧ ( 𝑤 ∈ 𝐾 ∧ 𝑦 ∈ 𝐾 ) ) → ( 𝐸 ( 𝐹 ‘ ( 𝑤 ( +g ‘ 𝑅 ) 𝑦 ) ) 𝐸 ) = ( 𝑤 ( +g ‘ 𝑅 ) 𝑦 ) ) |
| 41 | 26 36 40 | 3eqtr4rd | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ) ∧ ( 𝑤 ∈ 𝐾 ∧ 𝑦 ∈ 𝐾 ) ) → ( 𝐸 ( 𝐹 ‘ ( 𝑤 ( +g ‘ 𝑅 ) 𝑦 ) ) 𝐸 ) = ( 𝐸 ( ( 𝐹 ‘ 𝑤 ) ( +g ‘ 𝐴 ) ( 𝐹 ‘ 𝑦 ) ) 𝐸 ) ) |
| 42 | oveq1 | ⊢ ( 𝑖 = 𝐸 → ( 𝑖 ( 𝐹 ‘ ( 𝑤 ( +g ‘ 𝑅 ) 𝑦 ) ) 𝑗 ) = ( 𝐸 ( 𝐹 ‘ ( 𝑤 ( +g ‘ 𝑅 ) 𝑦 ) ) 𝑗 ) ) | |
| 43 | oveq1 | ⊢ ( 𝑖 = 𝐸 → ( 𝑖 ( ( 𝐹 ‘ 𝑤 ) ( +g ‘ 𝐴 ) ( 𝐹 ‘ 𝑦 ) ) 𝑗 ) = ( 𝐸 ( ( 𝐹 ‘ 𝑤 ) ( +g ‘ 𝐴 ) ( 𝐹 ‘ 𝑦 ) ) 𝑗 ) ) | |
| 44 | 42 43 | eqeq12d | ⊢ ( 𝑖 = 𝐸 → ( ( 𝑖 ( 𝐹 ‘ ( 𝑤 ( +g ‘ 𝑅 ) 𝑦 ) ) 𝑗 ) = ( 𝑖 ( ( 𝐹 ‘ 𝑤 ) ( +g ‘ 𝐴 ) ( 𝐹 ‘ 𝑦 ) ) 𝑗 ) ↔ ( 𝐸 ( 𝐹 ‘ ( 𝑤 ( +g ‘ 𝑅 ) 𝑦 ) ) 𝑗 ) = ( 𝐸 ( ( 𝐹 ‘ 𝑤 ) ( +g ‘ 𝐴 ) ( 𝐹 ‘ 𝑦 ) ) 𝑗 ) ) ) |
| 45 | oveq2 | ⊢ ( 𝑗 = 𝐸 → ( 𝐸 ( 𝐹 ‘ ( 𝑤 ( +g ‘ 𝑅 ) 𝑦 ) ) 𝑗 ) = ( 𝐸 ( 𝐹 ‘ ( 𝑤 ( +g ‘ 𝑅 ) 𝑦 ) ) 𝐸 ) ) | |
| 46 | oveq2 | ⊢ ( 𝑗 = 𝐸 → ( 𝐸 ( ( 𝐹 ‘ 𝑤 ) ( +g ‘ 𝐴 ) ( 𝐹 ‘ 𝑦 ) ) 𝑗 ) = ( 𝐸 ( ( 𝐹 ‘ 𝑤 ) ( +g ‘ 𝐴 ) ( 𝐹 ‘ 𝑦 ) ) 𝐸 ) ) | |
| 47 | 45 46 | eqeq12d | ⊢ ( 𝑗 = 𝐸 → ( ( 𝐸 ( 𝐹 ‘ ( 𝑤 ( +g ‘ 𝑅 ) 𝑦 ) ) 𝑗 ) = ( 𝐸 ( ( 𝐹 ‘ 𝑤 ) ( +g ‘ 𝐴 ) ( 𝐹 ‘ 𝑦 ) ) 𝑗 ) ↔ ( 𝐸 ( 𝐹 ‘ ( 𝑤 ( +g ‘ 𝑅 ) 𝑦 ) ) 𝐸 ) = ( 𝐸 ( ( 𝐹 ‘ 𝑤 ) ( +g ‘ 𝐴 ) ( 𝐹 ‘ 𝑦 ) ) 𝐸 ) ) ) |
| 48 | 44 47 | 2ralsng | ⊢ ( ( 𝐸 ∈ 𝑉 ∧ 𝐸 ∈ 𝑉 ) → ( ∀ 𝑖 ∈ { 𝐸 } ∀ 𝑗 ∈ { 𝐸 } ( 𝑖 ( 𝐹 ‘ ( 𝑤 ( +g ‘ 𝑅 ) 𝑦 ) ) 𝑗 ) = ( 𝑖 ( ( 𝐹 ‘ 𝑤 ) ( +g ‘ 𝐴 ) ( 𝐹 ‘ 𝑦 ) ) 𝑗 ) ↔ ( 𝐸 ( 𝐹 ‘ ( 𝑤 ( +g ‘ 𝑅 ) 𝑦 ) ) 𝐸 ) = ( 𝐸 ( ( 𝐹 ‘ 𝑤 ) ( +g ‘ 𝐴 ) ( 𝐹 ‘ 𝑦 ) ) 𝐸 ) ) ) |
| 49 | 16 16 48 | syl2anc | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ) → ( ∀ 𝑖 ∈ { 𝐸 } ∀ 𝑗 ∈ { 𝐸 } ( 𝑖 ( 𝐹 ‘ ( 𝑤 ( +g ‘ 𝑅 ) 𝑦 ) ) 𝑗 ) = ( 𝑖 ( ( 𝐹 ‘ 𝑤 ) ( +g ‘ 𝐴 ) ( 𝐹 ‘ 𝑦 ) ) 𝑗 ) ↔ ( 𝐸 ( 𝐹 ‘ ( 𝑤 ( +g ‘ 𝑅 ) 𝑦 ) ) 𝐸 ) = ( 𝐸 ( ( 𝐹 ‘ 𝑤 ) ( +g ‘ 𝐴 ) ( 𝐹 ‘ 𝑦 ) ) 𝐸 ) ) ) |
| 50 | 49 | adantr | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ) ∧ ( 𝑤 ∈ 𝐾 ∧ 𝑦 ∈ 𝐾 ) ) → ( ∀ 𝑖 ∈ { 𝐸 } ∀ 𝑗 ∈ { 𝐸 } ( 𝑖 ( 𝐹 ‘ ( 𝑤 ( +g ‘ 𝑅 ) 𝑦 ) ) 𝑗 ) = ( 𝑖 ( ( 𝐹 ‘ 𝑤 ) ( +g ‘ 𝐴 ) ( 𝐹 ‘ 𝑦 ) ) 𝑗 ) ↔ ( 𝐸 ( 𝐹 ‘ ( 𝑤 ( +g ‘ 𝑅 ) 𝑦 ) ) 𝐸 ) = ( 𝐸 ( ( 𝐹 ‘ 𝑤 ) ( +g ‘ 𝐴 ) ( 𝐹 ‘ 𝑦 ) ) 𝐸 ) ) ) |
| 51 | 41 50 | mpbird | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ) ∧ ( 𝑤 ∈ 𝐾 ∧ 𝑦 ∈ 𝐾 ) ) → ∀ 𝑖 ∈ { 𝐸 } ∀ 𝑗 ∈ { 𝐸 } ( 𝑖 ( 𝐹 ‘ ( 𝑤 ( +g ‘ 𝑅 ) 𝑦 ) ) 𝑗 ) = ( 𝑖 ( ( 𝐹 ‘ 𝑤 ) ( +g ‘ 𝐴 ) ( 𝐹 ‘ 𝑦 ) ) 𝑗 ) ) |
| 52 | 1 2 3 4 5 | mat1rhmcl | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ∧ ( 𝑤 ( +g ‘ 𝑅 ) 𝑦 ) ∈ 𝐾 ) → ( 𝐹 ‘ ( 𝑤 ( +g ‘ 𝑅 ) 𝑦 ) ) ∈ 𝐵 ) |
| 53 | 15 17 38 52 | syl3anc | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ) ∧ ( 𝑤 ∈ 𝐾 ∧ 𝑦 ∈ 𝐾 ) ) → ( 𝐹 ‘ ( 𝑤 ( +g ‘ 𝑅 ) 𝑦 ) ) ∈ 𝐵 ) |
| 54 | 2 | matring | ⊢ ( ( { 𝐸 } ∈ Fin ∧ 𝑅 ∈ Ring ) → 𝐴 ∈ Ring ) |
| 55 | 10 11 54 | sylancr | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ) → 𝐴 ∈ Ring ) |
| 56 | 55 | adantr | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ) ∧ ( 𝑤 ∈ 𝐾 ∧ 𝑦 ∈ 𝐾 ) ) → 𝐴 ∈ Ring ) |
| 57 | 3 7 | ringacl | ⊢ ( ( 𝐴 ∈ Ring ∧ ( 𝐹 ‘ 𝑤 ) ∈ 𝐵 ∧ ( 𝐹 ‘ 𝑦 ) ∈ 𝐵 ) → ( ( 𝐹 ‘ 𝑤 ) ( +g ‘ 𝐴 ) ( 𝐹 ‘ 𝑦 ) ) ∈ 𝐵 ) |
| 58 | 56 28 30 57 | syl3anc | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ) ∧ ( 𝑤 ∈ 𝐾 ∧ 𝑦 ∈ 𝐾 ) ) → ( ( 𝐹 ‘ 𝑤 ) ( +g ‘ 𝐴 ) ( 𝐹 ‘ 𝑦 ) ) ∈ 𝐵 ) |
| 59 | 2 3 | eqmat | ⊢ ( ( ( 𝐹 ‘ ( 𝑤 ( +g ‘ 𝑅 ) 𝑦 ) ) ∈ 𝐵 ∧ ( ( 𝐹 ‘ 𝑤 ) ( +g ‘ 𝐴 ) ( 𝐹 ‘ 𝑦 ) ) ∈ 𝐵 ) → ( ( 𝐹 ‘ ( 𝑤 ( +g ‘ 𝑅 ) 𝑦 ) ) = ( ( 𝐹 ‘ 𝑤 ) ( +g ‘ 𝐴 ) ( 𝐹 ‘ 𝑦 ) ) ↔ ∀ 𝑖 ∈ { 𝐸 } ∀ 𝑗 ∈ { 𝐸 } ( 𝑖 ( 𝐹 ‘ ( 𝑤 ( +g ‘ 𝑅 ) 𝑦 ) ) 𝑗 ) = ( 𝑖 ( ( 𝐹 ‘ 𝑤 ) ( +g ‘ 𝐴 ) ( 𝐹 ‘ 𝑦 ) ) 𝑗 ) ) ) |
| 60 | 53 58 59 | syl2anc | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ) ∧ ( 𝑤 ∈ 𝐾 ∧ 𝑦 ∈ 𝐾 ) ) → ( ( 𝐹 ‘ ( 𝑤 ( +g ‘ 𝑅 ) 𝑦 ) ) = ( ( 𝐹 ‘ 𝑤 ) ( +g ‘ 𝐴 ) ( 𝐹 ‘ 𝑦 ) ) ↔ ∀ 𝑖 ∈ { 𝐸 } ∀ 𝑗 ∈ { 𝐸 } ( 𝑖 ( 𝐹 ‘ ( 𝑤 ( +g ‘ 𝑅 ) 𝑦 ) ) 𝑗 ) = ( 𝑖 ( ( 𝐹 ‘ 𝑤 ) ( +g ‘ 𝐴 ) ( 𝐹 ‘ 𝑦 ) ) 𝑗 ) ) ) |
| 61 | 51 60 | mpbird | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ) ∧ ( 𝑤 ∈ 𝐾 ∧ 𝑦 ∈ 𝐾 ) ) → ( 𝐹 ‘ ( 𝑤 ( +g ‘ 𝑅 ) 𝑦 ) ) = ( ( 𝐹 ‘ 𝑤 ) ( +g ‘ 𝐴 ) ( 𝐹 ‘ 𝑦 ) ) ) |
| 62 | 1 3 6 7 9 13 14 61 | isghmd | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ) → 𝐹 ∈ ( 𝑅 GrpHom 𝐴 ) ) |