This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Addition in the matrix ring is cell-wise. (Contributed by AV, 2-Aug-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | matplusgcell.a | ⊢ 𝐴 = ( 𝑁 Mat 𝑅 ) | |
| matplusgcell.b | ⊢ 𝐵 = ( Base ‘ 𝐴 ) | ||
| matplusgcell.p | ⊢ ✚ = ( +g ‘ 𝐴 ) | ||
| matplusgcell.q | ⊢ + = ( +g ‘ 𝑅 ) | ||
| Assertion | matplusgcell | ⊢ ( ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁 ) ) → ( 𝐼 ( 𝑋 ✚ 𝑌 ) 𝐽 ) = ( ( 𝐼 𝑋 𝐽 ) + ( 𝐼 𝑌 𝐽 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | matplusgcell.a | ⊢ 𝐴 = ( 𝑁 Mat 𝑅 ) | |
| 2 | matplusgcell.b | ⊢ 𝐵 = ( Base ‘ 𝐴 ) | |
| 3 | matplusgcell.p | ⊢ ✚ = ( +g ‘ 𝐴 ) | |
| 4 | matplusgcell.q | ⊢ + = ( +g ‘ 𝑅 ) | |
| 5 | 1 2 3 4 | matplusg2 | ⊢ ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 ✚ 𝑌 ) = ( 𝑋 ∘f + 𝑌 ) ) |
| 6 | 5 | oveqd | ⊢ ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝐼 ( 𝑋 ✚ 𝑌 ) 𝐽 ) = ( 𝐼 ( 𝑋 ∘f + 𝑌 ) 𝐽 ) ) |
| 7 | 6 | adantr | ⊢ ( ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁 ) ) → ( 𝐼 ( 𝑋 ✚ 𝑌 ) 𝐽 ) = ( 𝐼 ( 𝑋 ∘f + 𝑌 ) 𝐽 ) ) |
| 8 | df-ov | ⊢ ( 𝐼 ( 𝑋 ∘f + 𝑌 ) 𝐽 ) = ( ( 𝑋 ∘f + 𝑌 ) ‘ 〈 𝐼 , 𝐽 〉 ) | |
| 9 | 8 | a1i | ⊢ ( ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁 ) ) → ( 𝐼 ( 𝑋 ∘f + 𝑌 ) 𝐽 ) = ( ( 𝑋 ∘f + 𝑌 ) ‘ 〈 𝐼 , 𝐽 〉 ) ) |
| 10 | opelxp | ⊢ ( 〈 𝐼 , 𝐽 〉 ∈ ( 𝑁 × 𝑁 ) ↔ ( 𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁 ) ) | |
| 11 | eqid | ⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) | |
| 12 | 1 11 2 | matbas2i | ⊢ ( 𝑋 ∈ 𝐵 → 𝑋 ∈ ( ( Base ‘ 𝑅 ) ↑m ( 𝑁 × 𝑁 ) ) ) |
| 13 | elmapfn | ⊢ ( 𝑋 ∈ ( ( Base ‘ 𝑅 ) ↑m ( 𝑁 × 𝑁 ) ) → 𝑋 Fn ( 𝑁 × 𝑁 ) ) | |
| 14 | 12 13 | syl | ⊢ ( 𝑋 ∈ 𝐵 → 𝑋 Fn ( 𝑁 × 𝑁 ) ) |
| 15 | 14 | adantr | ⊢ ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → 𝑋 Fn ( 𝑁 × 𝑁 ) ) |
| 16 | 1 11 2 | matbas2i | ⊢ ( 𝑌 ∈ 𝐵 → 𝑌 ∈ ( ( Base ‘ 𝑅 ) ↑m ( 𝑁 × 𝑁 ) ) ) |
| 17 | elmapfn | ⊢ ( 𝑌 ∈ ( ( Base ‘ 𝑅 ) ↑m ( 𝑁 × 𝑁 ) ) → 𝑌 Fn ( 𝑁 × 𝑁 ) ) | |
| 18 | 16 17 | syl | ⊢ ( 𝑌 ∈ 𝐵 → 𝑌 Fn ( 𝑁 × 𝑁 ) ) |
| 19 | 18 | adantl | ⊢ ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → 𝑌 Fn ( 𝑁 × 𝑁 ) ) |
| 20 | 1 2 | matrcl | ⊢ ( 𝑋 ∈ 𝐵 → ( 𝑁 ∈ Fin ∧ 𝑅 ∈ V ) ) |
| 21 | xpfi | ⊢ ( ( 𝑁 ∈ Fin ∧ 𝑁 ∈ Fin ) → ( 𝑁 × 𝑁 ) ∈ Fin ) | |
| 22 | 21 | anidms | ⊢ ( 𝑁 ∈ Fin → ( 𝑁 × 𝑁 ) ∈ Fin ) |
| 23 | 22 | adantr | ⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ V ) → ( 𝑁 × 𝑁 ) ∈ Fin ) |
| 24 | 20 23 | syl | ⊢ ( 𝑋 ∈ 𝐵 → ( 𝑁 × 𝑁 ) ∈ Fin ) |
| 25 | 24 | adantr | ⊢ ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑁 × 𝑁 ) ∈ Fin ) |
| 26 | inidm | ⊢ ( ( 𝑁 × 𝑁 ) ∩ ( 𝑁 × 𝑁 ) ) = ( 𝑁 × 𝑁 ) | |
| 27 | df-ov | ⊢ ( 𝐼 𝑋 𝐽 ) = ( 𝑋 ‘ 〈 𝐼 , 𝐽 〉 ) | |
| 28 | 27 | eqcomi | ⊢ ( 𝑋 ‘ 〈 𝐼 , 𝐽 〉 ) = ( 𝐼 𝑋 𝐽 ) |
| 29 | 28 | a1i | ⊢ ( ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ 〈 𝐼 , 𝐽 〉 ∈ ( 𝑁 × 𝑁 ) ) → ( 𝑋 ‘ 〈 𝐼 , 𝐽 〉 ) = ( 𝐼 𝑋 𝐽 ) ) |
| 30 | df-ov | ⊢ ( 𝐼 𝑌 𝐽 ) = ( 𝑌 ‘ 〈 𝐼 , 𝐽 〉 ) | |
| 31 | 30 | eqcomi | ⊢ ( 𝑌 ‘ 〈 𝐼 , 𝐽 〉 ) = ( 𝐼 𝑌 𝐽 ) |
| 32 | 31 | a1i | ⊢ ( ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ 〈 𝐼 , 𝐽 〉 ∈ ( 𝑁 × 𝑁 ) ) → ( 𝑌 ‘ 〈 𝐼 , 𝐽 〉 ) = ( 𝐼 𝑌 𝐽 ) ) |
| 33 | 15 19 25 25 26 29 32 | ofval | ⊢ ( ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ 〈 𝐼 , 𝐽 〉 ∈ ( 𝑁 × 𝑁 ) ) → ( ( 𝑋 ∘f + 𝑌 ) ‘ 〈 𝐼 , 𝐽 〉 ) = ( ( 𝐼 𝑋 𝐽 ) + ( 𝐼 𝑌 𝐽 ) ) ) |
| 34 | 10 33 | sylan2br | ⊢ ( ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁 ) ) → ( ( 𝑋 ∘f + 𝑌 ) ‘ 〈 𝐼 , 𝐽 〉 ) = ( ( 𝐼 𝑋 𝐽 ) + ( 𝐼 𝑌 𝐽 ) ) ) |
| 35 | 7 9 34 | 3eqtrd | ⊢ ( ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁 ) ) → ( 𝐼 ( 𝑋 ✚ 𝑌 ) 𝐽 ) = ( ( 𝐼 𝑋 𝐽 ) + ( 𝐼 𝑌 𝐽 ) ) ) |