This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of an identity matrix, see also the statement in Lang p. 504: "The unit element of the ring of n x n matrices is the matrix I_n ... whose components are equal to 0 except on the diagonal, in which case they are equal to 1.". (Contributed by Stefan O'Rear, 7-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mat1.a | ⊢ 𝐴 = ( 𝑁 Mat 𝑅 ) | |
| mat1.o | ⊢ 1 = ( 1r ‘ 𝑅 ) | ||
| mat1.z | ⊢ 0 = ( 0g ‘ 𝑅 ) | ||
| Assertion | mat1 | ⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → ( 1r ‘ 𝐴 ) = ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝑗 , 1 , 0 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mat1.a | ⊢ 𝐴 = ( 𝑁 Mat 𝑅 ) | |
| 2 | mat1.o | ⊢ 1 = ( 1r ‘ 𝑅 ) | |
| 3 | mat1.z | ⊢ 0 = ( 0g ‘ 𝑅 ) | |
| 4 | eqid | ⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) | |
| 5 | simpr | ⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → 𝑅 ∈ Ring ) | |
| 6 | eqid | ⊢ ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝑗 , 1 , 0 ) ) = ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝑗 , 1 , 0 ) ) | |
| 7 | simpl | ⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → 𝑁 ∈ Fin ) | |
| 8 | 4 5 2 3 6 7 | mamumat1cl | ⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝑗 , 1 , 0 ) ) ∈ ( ( Base ‘ 𝑅 ) ↑m ( 𝑁 × 𝑁 ) ) ) |
| 9 | 1 4 | matbas2 | ⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → ( ( Base ‘ 𝑅 ) ↑m ( 𝑁 × 𝑁 ) ) = ( Base ‘ 𝐴 ) ) |
| 10 | 8 9 | eleqtrd | ⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝑗 , 1 , 0 ) ) ∈ ( Base ‘ 𝐴 ) ) |
| 11 | eqid | ⊢ ( 𝑅 maMul 〈 𝑁 , 𝑁 , 𝑁 〉 ) = ( 𝑅 maMul 〈 𝑁 , 𝑁 , 𝑁 〉 ) | |
| 12 | 1 11 | matmulr | ⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → ( 𝑅 maMul 〈 𝑁 , 𝑁 , 𝑁 〉 ) = ( .r ‘ 𝐴 ) ) |
| 13 | 12 | adantr | ⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ 𝑥 ∈ ( Base ‘ 𝐴 ) ) → ( 𝑅 maMul 〈 𝑁 , 𝑁 , 𝑁 〉 ) = ( .r ‘ 𝐴 ) ) |
| 14 | 13 | oveqd | ⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ 𝑥 ∈ ( Base ‘ 𝐴 ) ) → ( ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝑗 , 1 , 0 ) ) ( 𝑅 maMul 〈 𝑁 , 𝑁 , 𝑁 〉 ) 𝑥 ) = ( ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝑗 , 1 , 0 ) ) ( .r ‘ 𝐴 ) 𝑥 ) ) |
| 15 | simplr | ⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ 𝑥 ∈ ( Base ‘ 𝐴 ) ) → 𝑅 ∈ Ring ) | |
| 16 | simpll | ⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ 𝑥 ∈ ( Base ‘ 𝐴 ) ) → 𝑁 ∈ Fin ) | |
| 17 | 9 | eleq2d | ⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → ( 𝑥 ∈ ( ( Base ‘ 𝑅 ) ↑m ( 𝑁 × 𝑁 ) ) ↔ 𝑥 ∈ ( Base ‘ 𝐴 ) ) ) |
| 18 | 17 | biimpar | ⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ 𝑥 ∈ ( Base ‘ 𝐴 ) ) → 𝑥 ∈ ( ( Base ‘ 𝑅 ) ↑m ( 𝑁 × 𝑁 ) ) ) |
| 19 | 4 15 2 3 6 16 16 11 18 | mamulid | ⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ 𝑥 ∈ ( Base ‘ 𝐴 ) ) → ( ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝑗 , 1 , 0 ) ) ( 𝑅 maMul 〈 𝑁 , 𝑁 , 𝑁 〉 ) 𝑥 ) = 𝑥 ) |
| 20 | 14 19 | eqtr3d | ⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ 𝑥 ∈ ( Base ‘ 𝐴 ) ) → ( ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝑗 , 1 , 0 ) ) ( .r ‘ 𝐴 ) 𝑥 ) = 𝑥 ) |
| 21 | 13 | oveqd | ⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ 𝑥 ∈ ( Base ‘ 𝐴 ) ) → ( 𝑥 ( 𝑅 maMul 〈 𝑁 , 𝑁 , 𝑁 〉 ) ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝑗 , 1 , 0 ) ) ) = ( 𝑥 ( .r ‘ 𝐴 ) ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝑗 , 1 , 0 ) ) ) ) |
| 22 | 4 15 2 3 6 16 16 11 18 | mamurid | ⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ 𝑥 ∈ ( Base ‘ 𝐴 ) ) → ( 𝑥 ( 𝑅 maMul 〈 𝑁 , 𝑁 , 𝑁 〉 ) ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝑗 , 1 , 0 ) ) ) = 𝑥 ) |
| 23 | 21 22 | eqtr3d | ⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ 𝑥 ∈ ( Base ‘ 𝐴 ) ) → ( 𝑥 ( .r ‘ 𝐴 ) ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝑗 , 1 , 0 ) ) ) = 𝑥 ) |
| 24 | 20 23 | jca | ⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ 𝑥 ∈ ( Base ‘ 𝐴 ) ) → ( ( ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝑗 , 1 , 0 ) ) ( .r ‘ 𝐴 ) 𝑥 ) = 𝑥 ∧ ( 𝑥 ( .r ‘ 𝐴 ) ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝑗 , 1 , 0 ) ) ) = 𝑥 ) ) |
| 25 | 24 | ralrimiva | ⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → ∀ 𝑥 ∈ ( Base ‘ 𝐴 ) ( ( ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝑗 , 1 , 0 ) ) ( .r ‘ 𝐴 ) 𝑥 ) = 𝑥 ∧ ( 𝑥 ( .r ‘ 𝐴 ) ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝑗 , 1 , 0 ) ) ) = 𝑥 ) ) |
| 26 | 1 | matring | ⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → 𝐴 ∈ Ring ) |
| 27 | eqid | ⊢ ( Base ‘ 𝐴 ) = ( Base ‘ 𝐴 ) | |
| 28 | eqid | ⊢ ( .r ‘ 𝐴 ) = ( .r ‘ 𝐴 ) | |
| 29 | eqid | ⊢ ( 1r ‘ 𝐴 ) = ( 1r ‘ 𝐴 ) | |
| 30 | 27 28 29 | isringid | ⊢ ( 𝐴 ∈ Ring → ( ( ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝑗 , 1 , 0 ) ) ∈ ( Base ‘ 𝐴 ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝐴 ) ( ( ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝑗 , 1 , 0 ) ) ( .r ‘ 𝐴 ) 𝑥 ) = 𝑥 ∧ ( 𝑥 ( .r ‘ 𝐴 ) ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝑗 , 1 , 0 ) ) ) = 𝑥 ) ) ↔ ( 1r ‘ 𝐴 ) = ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝑗 , 1 , 0 ) ) ) ) |
| 31 | 26 30 | syl | ⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → ( ( ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝑗 , 1 , 0 ) ) ∈ ( Base ‘ 𝐴 ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝐴 ) ( ( ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝑗 , 1 , 0 ) ) ( .r ‘ 𝐴 ) 𝑥 ) = 𝑥 ∧ ( 𝑥 ( .r ‘ 𝐴 ) ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝑗 , 1 , 0 ) ) ) = 𝑥 ) ) ↔ ( 1r ‘ 𝐴 ) = ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝑗 , 1 , 0 ) ) ) ) |
| 32 | 10 25 31 | mpbi2and | ⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → ( 1r ‘ 𝐴 ) = ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝑗 , 1 , 0 ) ) ) |