This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Multiplication in the matrix algebra. (Contributed by Stefan O'Rear, 4-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | matmulr.a | ⊢ 𝐴 = ( 𝑁 Mat 𝑅 ) | |
| matmulr.t | ⊢ · = ( 𝑅 maMul 〈 𝑁 , 𝑁 , 𝑁 〉 ) | ||
| Assertion | matmulr | ⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉 ) → · = ( .r ‘ 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | matmulr.a | ⊢ 𝐴 = ( 𝑁 Mat 𝑅 ) | |
| 2 | matmulr.t | ⊢ · = ( 𝑅 maMul 〈 𝑁 , 𝑁 , 𝑁 〉 ) | |
| 3 | ovex | ⊢ ( 𝑅 freeLMod ( 𝑁 × 𝑁 ) ) ∈ V | |
| 4 | 2 | ovexi | ⊢ · ∈ V |
| 5 | 3 4 | pm3.2i | ⊢ ( ( 𝑅 freeLMod ( 𝑁 × 𝑁 ) ) ∈ V ∧ · ∈ V ) |
| 6 | mulridx | ⊢ .r = Slot ( .r ‘ ndx ) | |
| 7 | 6 | setsid | ⊢ ( ( ( 𝑅 freeLMod ( 𝑁 × 𝑁 ) ) ∈ V ∧ · ∈ V ) → · = ( .r ‘ ( ( 𝑅 freeLMod ( 𝑁 × 𝑁 ) ) sSet 〈 ( .r ‘ ndx ) , · 〉 ) ) ) |
| 8 | 5 7 | mp1i | ⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉 ) → · = ( .r ‘ ( ( 𝑅 freeLMod ( 𝑁 × 𝑁 ) ) sSet 〈 ( .r ‘ ndx ) , · 〉 ) ) ) |
| 9 | eqid | ⊢ ( 𝑅 freeLMod ( 𝑁 × 𝑁 ) ) = ( 𝑅 freeLMod ( 𝑁 × 𝑁 ) ) | |
| 10 | 1 9 2 | matval | ⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉 ) → 𝐴 = ( ( 𝑅 freeLMod ( 𝑁 × 𝑁 ) ) sSet 〈 ( .r ‘ ndx ) , · 〉 ) ) |
| 11 | 10 | fveq2d | ⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉 ) → ( .r ‘ 𝐴 ) = ( .r ‘ ( ( 𝑅 freeLMod ( 𝑁 × 𝑁 ) ) sSet 〈 ( .r ‘ ndx ) , · 〉 ) ) ) |
| 12 | 8 11 | eqtr4d | ⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉 ) → · = ( .r ‘ 𝐴 ) ) |