This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of an identity matrix, see also the statement in Lang p. 504: "The unit element of the ring of n x n matrices is the matrix I_n ... whose components are equal to 0 except on the diagonal, in which case they are equal to 1.". (Contributed by Stefan O'Rear, 7-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mat1.a | |- A = ( N Mat R ) |
|
| mat1.o | |- .1. = ( 1r ` R ) |
||
| mat1.z | |- .0. = ( 0g ` R ) |
||
| Assertion | mat1 | |- ( ( N e. Fin /\ R e. Ring ) -> ( 1r ` A ) = ( i e. N , j e. N |-> if ( i = j , .1. , .0. ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mat1.a | |- A = ( N Mat R ) |
|
| 2 | mat1.o | |- .1. = ( 1r ` R ) |
|
| 3 | mat1.z | |- .0. = ( 0g ` R ) |
|
| 4 | eqid | |- ( Base ` R ) = ( Base ` R ) |
|
| 5 | simpr | |- ( ( N e. Fin /\ R e. Ring ) -> R e. Ring ) |
|
| 6 | eqid | |- ( i e. N , j e. N |-> if ( i = j , .1. , .0. ) ) = ( i e. N , j e. N |-> if ( i = j , .1. , .0. ) ) |
|
| 7 | simpl | |- ( ( N e. Fin /\ R e. Ring ) -> N e. Fin ) |
|
| 8 | 4 5 2 3 6 7 | mamumat1cl | |- ( ( N e. Fin /\ R e. Ring ) -> ( i e. N , j e. N |-> if ( i = j , .1. , .0. ) ) e. ( ( Base ` R ) ^m ( N X. N ) ) ) |
| 9 | 1 4 | matbas2 | |- ( ( N e. Fin /\ R e. Ring ) -> ( ( Base ` R ) ^m ( N X. N ) ) = ( Base ` A ) ) |
| 10 | 8 9 | eleqtrd | |- ( ( N e. Fin /\ R e. Ring ) -> ( i e. N , j e. N |-> if ( i = j , .1. , .0. ) ) e. ( Base ` A ) ) |
| 11 | eqid | |- ( R maMul <. N , N , N >. ) = ( R maMul <. N , N , N >. ) |
|
| 12 | 1 11 | matmulr | |- ( ( N e. Fin /\ R e. Ring ) -> ( R maMul <. N , N , N >. ) = ( .r ` A ) ) |
| 13 | 12 | adantr | |- ( ( ( N e. Fin /\ R e. Ring ) /\ x e. ( Base ` A ) ) -> ( R maMul <. N , N , N >. ) = ( .r ` A ) ) |
| 14 | 13 | oveqd | |- ( ( ( N e. Fin /\ R e. Ring ) /\ x e. ( Base ` A ) ) -> ( ( i e. N , j e. N |-> if ( i = j , .1. , .0. ) ) ( R maMul <. N , N , N >. ) x ) = ( ( i e. N , j e. N |-> if ( i = j , .1. , .0. ) ) ( .r ` A ) x ) ) |
| 15 | simplr | |- ( ( ( N e. Fin /\ R e. Ring ) /\ x e. ( Base ` A ) ) -> R e. Ring ) |
|
| 16 | simpll | |- ( ( ( N e. Fin /\ R e. Ring ) /\ x e. ( Base ` A ) ) -> N e. Fin ) |
|
| 17 | 9 | eleq2d | |- ( ( N e. Fin /\ R e. Ring ) -> ( x e. ( ( Base ` R ) ^m ( N X. N ) ) <-> x e. ( Base ` A ) ) ) |
| 18 | 17 | biimpar | |- ( ( ( N e. Fin /\ R e. Ring ) /\ x e. ( Base ` A ) ) -> x e. ( ( Base ` R ) ^m ( N X. N ) ) ) |
| 19 | 4 15 2 3 6 16 16 11 18 | mamulid | |- ( ( ( N e. Fin /\ R e. Ring ) /\ x e. ( Base ` A ) ) -> ( ( i e. N , j e. N |-> if ( i = j , .1. , .0. ) ) ( R maMul <. N , N , N >. ) x ) = x ) |
| 20 | 14 19 | eqtr3d | |- ( ( ( N e. Fin /\ R e. Ring ) /\ x e. ( Base ` A ) ) -> ( ( i e. N , j e. N |-> if ( i = j , .1. , .0. ) ) ( .r ` A ) x ) = x ) |
| 21 | 13 | oveqd | |- ( ( ( N e. Fin /\ R e. Ring ) /\ x e. ( Base ` A ) ) -> ( x ( R maMul <. N , N , N >. ) ( i e. N , j e. N |-> if ( i = j , .1. , .0. ) ) ) = ( x ( .r ` A ) ( i e. N , j e. N |-> if ( i = j , .1. , .0. ) ) ) ) |
| 22 | 4 15 2 3 6 16 16 11 18 | mamurid | |- ( ( ( N e. Fin /\ R e. Ring ) /\ x e. ( Base ` A ) ) -> ( x ( R maMul <. N , N , N >. ) ( i e. N , j e. N |-> if ( i = j , .1. , .0. ) ) ) = x ) |
| 23 | 21 22 | eqtr3d | |- ( ( ( N e. Fin /\ R e. Ring ) /\ x e. ( Base ` A ) ) -> ( x ( .r ` A ) ( i e. N , j e. N |-> if ( i = j , .1. , .0. ) ) ) = x ) |
| 24 | 20 23 | jca | |- ( ( ( N e. Fin /\ R e. Ring ) /\ x e. ( Base ` A ) ) -> ( ( ( i e. N , j e. N |-> if ( i = j , .1. , .0. ) ) ( .r ` A ) x ) = x /\ ( x ( .r ` A ) ( i e. N , j e. N |-> if ( i = j , .1. , .0. ) ) ) = x ) ) |
| 25 | 24 | ralrimiva | |- ( ( N e. Fin /\ R e. Ring ) -> A. x e. ( Base ` A ) ( ( ( i e. N , j e. N |-> if ( i = j , .1. , .0. ) ) ( .r ` A ) x ) = x /\ ( x ( .r ` A ) ( i e. N , j e. N |-> if ( i = j , .1. , .0. ) ) ) = x ) ) |
| 26 | 1 | matring | |- ( ( N e. Fin /\ R e. Ring ) -> A e. Ring ) |
| 27 | eqid | |- ( Base ` A ) = ( Base ` A ) |
|
| 28 | eqid | |- ( .r ` A ) = ( .r ` A ) |
|
| 29 | eqid | |- ( 1r ` A ) = ( 1r ` A ) |
|
| 30 | 27 28 29 | isringid | |- ( A e. Ring -> ( ( ( i e. N , j e. N |-> if ( i = j , .1. , .0. ) ) e. ( Base ` A ) /\ A. x e. ( Base ` A ) ( ( ( i e. N , j e. N |-> if ( i = j , .1. , .0. ) ) ( .r ` A ) x ) = x /\ ( x ( .r ` A ) ( i e. N , j e. N |-> if ( i = j , .1. , .0. ) ) ) = x ) ) <-> ( 1r ` A ) = ( i e. N , j e. N |-> if ( i = j , .1. , .0. ) ) ) ) |
| 31 | 26 30 | syl | |- ( ( N e. Fin /\ R e. Ring ) -> ( ( ( i e. N , j e. N |-> if ( i = j , .1. , .0. ) ) e. ( Base ` A ) /\ A. x e. ( Base ` A ) ( ( ( i e. N , j e. N |-> if ( i = j , .1. , .0. ) ) ( .r ` A ) x ) = x /\ ( x ( .r ` A ) ( i e. N , j e. N |-> if ( i = j , .1. , .0. ) ) ) = x ) ) <-> ( 1r ` A ) = ( i e. N , j e. N |-> if ( i = j , .1. , .0. ) ) ) ) |
| 32 | 10 25 31 | mpbi2and | |- ( ( N e. Fin /\ R e. Ring ) -> ( 1r ` A ) = ( i e. N , j e. N |-> if ( i = j , .1. , .0. ) ) ) |