This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The identity matrix (as operation in maps-to notation) is a matrix. (Contributed by Stefan O'Rear, 2-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mamumat1cl.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| mamumat1cl.r | ⊢ ( 𝜑 → 𝑅 ∈ Ring ) | ||
| mamumat1cl.o | ⊢ 1 = ( 1r ‘ 𝑅 ) | ||
| mamumat1cl.z | ⊢ 0 = ( 0g ‘ 𝑅 ) | ||
| mamumat1cl.i | ⊢ 𝐼 = ( 𝑖 ∈ 𝑀 , 𝑗 ∈ 𝑀 ↦ if ( 𝑖 = 𝑗 , 1 , 0 ) ) | ||
| mamumat1cl.m | ⊢ ( 𝜑 → 𝑀 ∈ Fin ) | ||
| Assertion | mamumat1cl | ⊢ ( 𝜑 → 𝐼 ∈ ( 𝐵 ↑m ( 𝑀 × 𝑀 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mamumat1cl.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| 2 | mamumat1cl.r | ⊢ ( 𝜑 → 𝑅 ∈ Ring ) | |
| 3 | mamumat1cl.o | ⊢ 1 = ( 1r ‘ 𝑅 ) | |
| 4 | mamumat1cl.z | ⊢ 0 = ( 0g ‘ 𝑅 ) | |
| 5 | mamumat1cl.i | ⊢ 𝐼 = ( 𝑖 ∈ 𝑀 , 𝑗 ∈ 𝑀 ↦ if ( 𝑖 = 𝑗 , 1 , 0 ) ) | |
| 6 | mamumat1cl.m | ⊢ ( 𝜑 → 𝑀 ∈ Fin ) | |
| 7 | 1 3 | ringidcl | ⊢ ( 𝑅 ∈ Ring → 1 ∈ 𝐵 ) |
| 8 | 1 4 | ring0cl | ⊢ ( 𝑅 ∈ Ring → 0 ∈ 𝐵 ) |
| 9 | 7 8 | ifcld | ⊢ ( 𝑅 ∈ Ring → if ( 𝑖 = 𝑗 , 1 , 0 ) ∈ 𝐵 ) |
| 10 | 2 9 | syl | ⊢ ( 𝜑 → if ( 𝑖 = 𝑗 , 1 , 0 ) ∈ 𝐵 ) |
| 11 | 10 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑗 ∈ 𝑀 ) ) → if ( 𝑖 = 𝑗 , 1 , 0 ) ∈ 𝐵 ) |
| 12 | 11 | ralrimivva | ⊢ ( 𝜑 → ∀ 𝑖 ∈ 𝑀 ∀ 𝑗 ∈ 𝑀 if ( 𝑖 = 𝑗 , 1 , 0 ) ∈ 𝐵 ) |
| 13 | 5 | fmpo | ⊢ ( ∀ 𝑖 ∈ 𝑀 ∀ 𝑗 ∈ 𝑀 if ( 𝑖 = 𝑗 , 1 , 0 ) ∈ 𝐵 ↔ 𝐼 : ( 𝑀 × 𝑀 ) ⟶ 𝐵 ) |
| 14 | 12 13 | sylib | ⊢ ( 𝜑 → 𝐼 : ( 𝑀 × 𝑀 ) ⟶ 𝐵 ) |
| 15 | 1 | fvexi | ⊢ 𝐵 ∈ V |
| 16 | xpfi | ⊢ ( ( 𝑀 ∈ Fin ∧ 𝑀 ∈ Fin ) → ( 𝑀 × 𝑀 ) ∈ Fin ) | |
| 17 | 6 6 16 | syl2anc | ⊢ ( 𝜑 → ( 𝑀 × 𝑀 ) ∈ Fin ) |
| 18 | elmapg | ⊢ ( ( 𝐵 ∈ V ∧ ( 𝑀 × 𝑀 ) ∈ Fin ) → ( 𝐼 ∈ ( 𝐵 ↑m ( 𝑀 × 𝑀 ) ) ↔ 𝐼 : ( 𝑀 × 𝑀 ) ⟶ 𝐵 ) ) | |
| 19 | 15 17 18 | sylancr | ⊢ ( 𝜑 → ( 𝐼 ∈ ( 𝐵 ↑m ( 𝑀 × 𝑀 ) ) ↔ 𝐼 : ( 𝑀 × 𝑀 ) ⟶ 𝐵 ) ) |
| 20 | 14 19 | mpbird | ⊢ ( 𝜑 → 𝐼 ∈ ( 𝐵 ↑m ( 𝑀 × 𝑀 ) ) ) |