This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The identity matrix (as operation in maps-to notation) is a right identity (for any matrix with the same number of columns). (Contributed by Stefan O'Rear, 3-Sep-2015) (Proof shortened by AV, 22-Jul-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mamumat1cl.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| mamumat1cl.r | ⊢ ( 𝜑 → 𝑅 ∈ Ring ) | ||
| mamumat1cl.o | ⊢ 1 = ( 1r ‘ 𝑅 ) | ||
| mamumat1cl.z | ⊢ 0 = ( 0g ‘ 𝑅 ) | ||
| mamumat1cl.i | ⊢ 𝐼 = ( 𝑖 ∈ 𝑀 , 𝑗 ∈ 𝑀 ↦ if ( 𝑖 = 𝑗 , 1 , 0 ) ) | ||
| mamumat1cl.m | ⊢ ( 𝜑 → 𝑀 ∈ Fin ) | ||
| mamulid.n | ⊢ ( 𝜑 → 𝑁 ∈ Fin ) | ||
| mamurid.f | ⊢ 𝐹 = ( 𝑅 maMul 〈 𝑁 , 𝑀 , 𝑀 〉 ) | ||
| mamurid.x | ⊢ ( 𝜑 → 𝑋 ∈ ( 𝐵 ↑m ( 𝑁 × 𝑀 ) ) ) | ||
| Assertion | mamurid | ⊢ ( 𝜑 → ( 𝑋 𝐹 𝐼 ) = 𝑋 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mamumat1cl.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| 2 | mamumat1cl.r | ⊢ ( 𝜑 → 𝑅 ∈ Ring ) | |
| 3 | mamumat1cl.o | ⊢ 1 = ( 1r ‘ 𝑅 ) | |
| 4 | mamumat1cl.z | ⊢ 0 = ( 0g ‘ 𝑅 ) | |
| 5 | mamumat1cl.i | ⊢ 𝐼 = ( 𝑖 ∈ 𝑀 , 𝑗 ∈ 𝑀 ↦ if ( 𝑖 = 𝑗 , 1 , 0 ) ) | |
| 6 | mamumat1cl.m | ⊢ ( 𝜑 → 𝑀 ∈ Fin ) | |
| 7 | mamulid.n | ⊢ ( 𝜑 → 𝑁 ∈ Fin ) | |
| 8 | mamurid.f | ⊢ 𝐹 = ( 𝑅 maMul 〈 𝑁 , 𝑀 , 𝑀 〉 ) | |
| 9 | mamurid.x | ⊢ ( 𝜑 → 𝑋 ∈ ( 𝐵 ↑m ( 𝑁 × 𝑀 ) ) ) | |
| 10 | eqid | ⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) | |
| 11 | 2 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑙 ∈ 𝑁 ∧ 𝑚 ∈ 𝑀 ) ) → 𝑅 ∈ Ring ) |
| 12 | 7 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑙 ∈ 𝑁 ∧ 𝑚 ∈ 𝑀 ) ) → 𝑁 ∈ Fin ) |
| 13 | 6 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑙 ∈ 𝑁 ∧ 𝑚 ∈ 𝑀 ) ) → 𝑀 ∈ Fin ) |
| 14 | 9 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑙 ∈ 𝑁 ∧ 𝑚 ∈ 𝑀 ) ) → 𝑋 ∈ ( 𝐵 ↑m ( 𝑁 × 𝑀 ) ) ) |
| 15 | 1 2 3 4 5 6 | mamumat1cl | ⊢ ( 𝜑 → 𝐼 ∈ ( 𝐵 ↑m ( 𝑀 × 𝑀 ) ) ) |
| 16 | 15 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑙 ∈ 𝑁 ∧ 𝑚 ∈ 𝑀 ) ) → 𝐼 ∈ ( 𝐵 ↑m ( 𝑀 × 𝑀 ) ) ) |
| 17 | simprl | ⊢ ( ( 𝜑 ∧ ( 𝑙 ∈ 𝑁 ∧ 𝑚 ∈ 𝑀 ) ) → 𝑙 ∈ 𝑁 ) | |
| 18 | simprr | ⊢ ( ( 𝜑 ∧ ( 𝑙 ∈ 𝑁 ∧ 𝑚 ∈ 𝑀 ) ) → 𝑚 ∈ 𝑀 ) | |
| 19 | 8 1 10 11 12 13 13 14 16 17 18 | mamufv | ⊢ ( ( 𝜑 ∧ ( 𝑙 ∈ 𝑁 ∧ 𝑚 ∈ 𝑀 ) ) → ( 𝑙 ( 𝑋 𝐹 𝐼 ) 𝑚 ) = ( 𝑅 Σg ( 𝑘 ∈ 𝑀 ↦ ( ( 𝑙 𝑋 𝑘 ) ( .r ‘ 𝑅 ) ( 𝑘 𝐼 𝑚 ) ) ) ) ) |
| 20 | ringmnd | ⊢ ( 𝑅 ∈ Ring → 𝑅 ∈ Mnd ) | |
| 21 | 11 20 | syl | ⊢ ( ( 𝜑 ∧ ( 𝑙 ∈ 𝑁 ∧ 𝑚 ∈ 𝑀 ) ) → 𝑅 ∈ Mnd ) |
| 22 | 2 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑙 ∈ 𝑁 ∧ 𝑚 ∈ 𝑀 ) ) ∧ 𝑘 ∈ 𝑀 ) → 𝑅 ∈ Ring ) |
| 23 | elmapi | ⊢ ( 𝑋 ∈ ( 𝐵 ↑m ( 𝑁 × 𝑀 ) ) → 𝑋 : ( 𝑁 × 𝑀 ) ⟶ 𝐵 ) | |
| 24 | 9 23 | syl | ⊢ ( 𝜑 → 𝑋 : ( 𝑁 × 𝑀 ) ⟶ 𝐵 ) |
| 25 | 24 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑙 ∈ 𝑁 ∧ 𝑚 ∈ 𝑀 ) ) ∧ 𝑘 ∈ 𝑀 ) → 𝑋 : ( 𝑁 × 𝑀 ) ⟶ 𝐵 ) |
| 26 | simplrl | ⊢ ( ( ( 𝜑 ∧ ( 𝑙 ∈ 𝑁 ∧ 𝑚 ∈ 𝑀 ) ) ∧ 𝑘 ∈ 𝑀 ) → 𝑙 ∈ 𝑁 ) | |
| 27 | simpr | ⊢ ( ( ( 𝜑 ∧ ( 𝑙 ∈ 𝑁 ∧ 𝑚 ∈ 𝑀 ) ) ∧ 𝑘 ∈ 𝑀 ) → 𝑘 ∈ 𝑀 ) | |
| 28 | 25 26 27 | fovcdmd | ⊢ ( ( ( 𝜑 ∧ ( 𝑙 ∈ 𝑁 ∧ 𝑚 ∈ 𝑀 ) ) ∧ 𝑘 ∈ 𝑀 ) → ( 𝑙 𝑋 𝑘 ) ∈ 𝐵 ) |
| 29 | elmapi | ⊢ ( 𝐼 ∈ ( 𝐵 ↑m ( 𝑀 × 𝑀 ) ) → 𝐼 : ( 𝑀 × 𝑀 ) ⟶ 𝐵 ) | |
| 30 | 15 29 | syl | ⊢ ( 𝜑 → 𝐼 : ( 𝑀 × 𝑀 ) ⟶ 𝐵 ) |
| 31 | 30 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑙 ∈ 𝑁 ∧ 𝑚 ∈ 𝑀 ) ) ∧ 𝑘 ∈ 𝑀 ) → 𝐼 : ( 𝑀 × 𝑀 ) ⟶ 𝐵 ) |
| 32 | simplrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑙 ∈ 𝑁 ∧ 𝑚 ∈ 𝑀 ) ) ∧ 𝑘 ∈ 𝑀 ) → 𝑚 ∈ 𝑀 ) | |
| 33 | 31 27 32 | fovcdmd | ⊢ ( ( ( 𝜑 ∧ ( 𝑙 ∈ 𝑁 ∧ 𝑚 ∈ 𝑀 ) ) ∧ 𝑘 ∈ 𝑀 ) → ( 𝑘 𝐼 𝑚 ) ∈ 𝐵 ) |
| 34 | 1 10 | ringcl | ⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑙 𝑋 𝑘 ) ∈ 𝐵 ∧ ( 𝑘 𝐼 𝑚 ) ∈ 𝐵 ) → ( ( 𝑙 𝑋 𝑘 ) ( .r ‘ 𝑅 ) ( 𝑘 𝐼 𝑚 ) ) ∈ 𝐵 ) |
| 35 | 22 28 33 34 | syl3anc | ⊢ ( ( ( 𝜑 ∧ ( 𝑙 ∈ 𝑁 ∧ 𝑚 ∈ 𝑀 ) ) ∧ 𝑘 ∈ 𝑀 ) → ( ( 𝑙 𝑋 𝑘 ) ( .r ‘ 𝑅 ) ( 𝑘 𝐼 𝑚 ) ) ∈ 𝐵 ) |
| 36 | 35 | fmpttd | ⊢ ( ( 𝜑 ∧ ( 𝑙 ∈ 𝑁 ∧ 𝑚 ∈ 𝑀 ) ) → ( 𝑘 ∈ 𝑀 ↦ ( ( 𝑙 𝑋 𝑘 ) ( .r ‘ 𝑅 ) ( 𝑘 𝐼 𝑚 ) ) ) : 𝑀 ⟶ 𝐵 ) |
| 37 | simp2 | ⊢ ( ( ( 𝜑 ∧ ( 𝑙 ∈ 𝑁 ∧ 𝑚 ∈ 𝑀 ) ) ∧ 𝑘 ∈ 𝑀 ∧ 𝑘 ≠ 𝑚 ) → 𝑘 ∈ 𝑀 ) | |
| 38 | 32 | 3adant3 | ⊢ ( ( ( 𝜑 ∧ ( 𝑙 ∈ 𝑁 ∧ 𝑚 ∈ 𝑀 ) ) ∧ 𝑘 ∈ 𝑀 ∧ 𝑘 ≠ 𝑚 ) → 𝑚 ∈ 𝑀 ) |
| 39 | 1 2 3 4 5 6 | mat1comp | ⊢ ( ( 𝑘 ∈ 𝑀 ∧ 𝑚 ∈ 𝑀 ) → ( 𝑘 𝐼 𝑚 ) = if ( 𝑘 = 𝑚 , 1 , 0 ) ) |
| 40 | 37 38 39 | syl2anc | ⊢ ( ( ( 𝜑 ∧ ( 𝑙 ∈ 𝑁 ∧ 𝑚 ∈ 𝑀 ) ) ∧ 𝑘 ∈ 𝑀 ∧ 𝑘 ≠ 𝑚 ) → ( 𝑘 𝐼 𝑚 ) = if ( 𝑘 = 𝑚 , 1 , 0 ) ) |
| 41 | ifnefalse | ⊢ ( 𝑘 ≠ 𝑚 → if ( 𝑘 = 𝑚 , 1 , 0 ) = 0 ) | |
| 42 | 41 | 3ad2ant3 | ⊢ ( ( ( 𝜑 ∧ ( 𝑙 ∈ 𝑁 ∧ 𝑚 ∈ 𝑀 ) ) ∧ 𝑘 ∈ 𝑀 ∧ 𝑘 ≠ 𝑚 ) → if ( 𝑘 = 𝑚 , 1 , 0 ) = 0 ) |
| 43 | 40 42 | eqtrd | ⊢ ( ( ( 𝜑 ∧ ( 𝑙 ∈ 𝑁 ∧ 𝑚 ∈ 𝑀 ) ) ∧ 𝑘 ∈ 𝑀 ∧ 𝑘 ≠ 𝑚 ) → ( 𝑘 𝐼 𝑚 ) = 0 ) |
| 44 | 43 | oveq2d | ⊢ ( ( ( 𝜑 ∧ ( 𝑙 ∈ 𝑁 ∧ 𝑚 ∈ 𝑀 ) ) ∧ 𝑘 ∈ 𝑀 ∧ 𝑘 ≠ 𝑚 ) → ( ( 𝑙 𝑋 𝑘 ) ( .r ‘ 𝑅 ) ( 𝑘 𝐼 𝑚 ) ) = ( ( 𝑙 𝑋 𝑘 ) ( .r ‘ 𝑅 ) 0 ) ) |
| 45 | 1 10 4 | ringrz | ⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑙 𝑋 𝑘 ) ∈ 𝐵 ) → ( ( 𝑙 𝑋 𝑘 ) ( .r ‘ 𝑅 ) 0 ) = 0 ) |
| 46 | 22 28 45 | syl2anc | ⊢ ( ( ( 𝜑 ∧ ( 𝑙 ∈ 𝑁 ∧ 𝑚 ∈ 𝑀 ) ) ∧ 𝑘 ∈ 𝑀 ) → ( ( 𝑙 𝑋 𝑘 ) ( .r ‘ 𝑅 ) 0 ) = 0 ) |
| 47 | 46 | 3adant3 | ⊢ ( ( ( 𝜑 ∧ ( 𝑙 ∈ 𝑁 ∧ 𝑚 ∈ 𝑀 ) ) ∧ 𝑘 ∈ 𝑀 ∧ 𝑘 ≠ 𝑚 ) → ( ( 𝑙 𝑋 𝑘 ) ( .r ‘ 𝑅 ) 0 ) = 0 ) |
| 48 | 44 47 | eqtrd | ⊢ ( ( ( 𝜑 ∧ ( 𝑙 ∈ 𝑁 ∧ 𝑚 ∈ 𝑀 ) ) ∧ 𝑘 ∈ 𝑀 ∧ 𝑘 ≠ 𝑚 ) → ( ( 𝑙 𝑋 𝑘 ) ( .r ‘ 𝑅 ) ( 𝑘 𝐼 𝑚 ) ) = 0 ) |
| 49 | 48 13 | suppsssn | ⊢ ( ( 𝜑 ∧ ( 𝑙 ∈ 𝑁 ∧ 𝑚 ∈ 𝑀 ) ) → ( ( 𝑘 ∈ 𝑀 ↦ ( ( 𝑙 𝑋 𝑘 ) ( .r ‘ 𝑅 ) ( 𝑘 𝐼 𝑚 ) ) ) supp 0 ) ⊆ { 𝑚 } ) |
| 50 | 1 4 21 13 18 36 49 | gsumpt | ⊢ ( ( 𝜑 ∧ ( 𝑙 ∈ 𝑁 ∧ 𝑚 ∈ 𝑀 ) ) → ( 𝑅 Σg ( 𝑘 ∈ 𝑀 ↦ ( ( 𝑙 𝑋 𝑘 ) ( .r ‘ 𝑅 ) ( 𝑘 𝐼 𝑚 ) ) ) ) = ( ( 𝑘 ∈ 𝑀 ↦ ( ( 𝑙 𝑋 𝑘 ) ( .r ‘ 𝑅 ) ( 𝑘 𝐼 𝑚 ) ) ) ‘ 𝑚 ) ) |
| 51 | oveq2 | ⊢ ( 𝑘 = 𝑚 → ( 𝑙 𝑋 𝑘 ) = ( 𝑙 𝑋 𝑚 ) ) | |
| 52 | oveq1 | ⊢ ( 𝑘 = 𝑚 → ( 𝑘 𝐼 𝑚 ) = ( 𝑚 𝐼 𝑚 ) ) | |
| 53 | 51 52 | oveq12d | ⊢ ( 𝑘 = 𝑚 → ( ( 𝑙 𝑋 𝑘 ) ( .r ‘ 𝑅 ) ( 𝑘 𝐼 𝑚 ) ) = ( ( 𝑙 𝑋 𝑚 ) ( .r ‘ 𝑅 ) ( 𝑚 𝐼 𝑚 ) ) ) |
| 54 | eqid | ⊢ ( 𝑘 ∈ 𝑀 ↦ ( ( 𝑙 𝑋 𝑘 ) ( .r ‘ 𝑅 ) ( 𝑘 𝐼 𝑚 ) ) ) = ( 𝑘 ∈ 𝑀 ↦ ( ( 𝑙 𝑋 𝑘 ) ( .r ‘ 𝑅 ) ( 𝑘 𝐼 𝑚 ) ) ) | |
| 55 | ovex | ⊢ ( ( 𝑙 𝑋 𝑚 ) ( .r ‘ 𝑅 ) ( 𝑚 𝐼 𝑚 ) ) ∈ V | |
| 56 | 53 54 55 | fvmpt | ⊢ ( 𝑚 ∈ 𝑀 → ( ( 𝑘 ∈ 𝑀 ↦ ( ( 𝑙 𝑋 𝑘 ) ( .r ‘ 𝑅 ) ( 𝑘 𝐼 𝑚 ) ) ) ‘ 𝑚 ) = ( ( 𝑙 𝑋 𝑚 ) ( .r ‘ 𝑅 ) ( 𝑚 𝐼 𝑚 ) ) ) |
| 57 | 56 | ad2antll | ⊢ ( ( 𝜑 ∧ ( 𝑙 ∈ 𝑁 ∧ 𝑚 ∈ 𝑀 ) ) → ( ( 𝑘 ∈ 𝑀 ↦ ( ( 𝑙 𝑋 𝑘 ) ( .r ‘ 𝑅 ) ( 𝑘 𝐼 𝑚 ) ) ) ‘ 𝑚 ) = ( ( 𝑙 𝑋 𝑚 ) ( .r ‘ 𝑅 ) ( 𝑚 𝐼 𝑚 ) ) ) |
| 58 | equequ1 | ⊢ ( 𝑖 = 𝑚 → ( 𝑖 = 𝑗 ↔ 𝑚 = 𝑗 ) ) | |
| 59 | 58 | ifbid | ⊢ ( 𝑖 = 𝑚 → if ( 𝑖 = 𝑗 , 1 , 0 ) = if ( 𝑚 = 𝑗 , 1 , 0 ) ) |
| 60 | equequ2 | ⊢ ( 𝑗 = 𝑚 → ( 𝑚 = 𝑗 ↔ 𝑚 = 𝑚 ) ) | |
| 61 | 60 | ifbid | ⊢ ( 𝑗 = 𝑚 → if ( 𝑚 = 𝑗 , 1 , 0 ) = if ( 𝑚 = 𝑚 , 1 , 0 ) ) |
| 62 | eqid | ⊢ 𝑚 = 𝑚 | |
| 63 | 62 | iftruei | ⊢ if ( 𝑚 = 𝑚 , 1 , 0 ) = 1 |
| 64 | 61 63 | eqtrdi | ⊢ ( 𝑗 = 𝑚 → if ( 𝑚 = 𝑗 , 1 , 0 ) = 1 ) |
| 65 | 3 | fvexi | ⊢ 1 ∈ V |
| 66 | 59 64 5 65 | ovmpo | ⊢ ( ( 𝑚 ∈ 𝑀 ∧ 𝑚 ∈ 𝑀 ) → ( 𝑚 𝐼 𝑚 ) = 1 ) |
| 67 | 66 | anidms | ⊢ ( 𝑚 ∈ 𝑀 → ( 𝑚 𝐼 𝑚 ) = 1 ) |
| 68 | 67 | oveq2d | ⊢ ( 𝑚 ∈ 𝑀 → ( ( 𝑙 𝑋 𝑚 ) ( .r ‘ 𝑅 ) ( 𝑚 𝐼 𝑚 ) ) = ( ( 𝑙 𝑋 𝑚 ) ( .r ‘ 𝑅 ) 1 ) ) |
| 69 | 68 | ad2antll | ⊢ ( ( 𝜑 ∧ ( 𝑙 ∈ 𝑁 ∧ 𝑚 ∈ 𝑀 ) ) → ( ( 𝑙 𝑋 𝑚 ) ( .r ‘ 𝑅 ) ( 𝑚 𝐼 𝑚 ) ) = ( ( 𝑙 𝑋 𝑚 ) ( .r ‘ 𝑅 ) 1 ) ) |
| 70 | 24 | fovcdmda | ⊢ ( ( 𝜑 ∧ ( 𝑙 ∈ 𝑁 ∧ 𝑚 ∈ 𝑀 ) ) → ( 𝑙 𝑋 𝑚 ) ∈ 𝐵 ) |
| 71 | 1 10 3 | ringridm | ⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑙 𝑋 𝑚 ) ∈ 𝐵 ) → ( ( 𝑙 𝑋 𝑚 ) ( .r ‘ 𝑅 ) 1 ) = ( 𝑙 𝑋 𝑚 ) ) |
| 72 | 11 70 71 | syl2anc | ⊢ ( ( 𝜑 ∧ ( 𝑙 ∈ 𝑁 ∧ 𝑚 ∈ 𝑀 ) ) → ( ( 𝑙 𝑋 𝑚 ) ( .r ‘ 𝑅 ) 1 ) = ( 𝑙 𝑋 𝑚 ) ) |
| 73 | 57 69 72 | 3eqtrd | ⊢ ( ( 𝜑 ∧ ( 𝑙 ∈ 𝑁 ∧ 𝑚 ∈ 𝑀 ) ) → ( ( 𝑘 ∈ 𝑀 ↦ ( ( 𝑙 𝑋 𝑘 ) ( .r ‘ 𝑅 ) ( 𝑘 𝐼 𝑚 ) ) ) ‘ 𝑚 ) = ( 𝑙 𝑋 𝑚 ) ) |
| 74 | 19 50 73 | 3eqtrd | ⊢ ( ( 𝜑 ∧ ( 𝑙 ∈ 𝑁 ∧ 𝑚 ∈ 𝑀 ) ) → ( 𝑙 ( 𝑋 𝐹 𝐼 ) 𝑚 ) = ( 𝑙 𝑋 𝑚 ) ) |
| 75 | 74 | ralrimivva | ⊢ ( 𝜑 → ∀ 𝑙 ∈ 𝑁 ∀ 𝑚 ∈ 𝑀 ( 𝑙 ( 𝑋 𝐹 𝐼 ) 𝑚 ) = ( 𝑙 𝑋 𝑚 ) ) |
| 76 | 1 2 8 7 6 6 9 15 | mamucl | ⊢ ( 𝜑 → ( 𝑋 𝐹 𝐼 ) ∈ ( 𝐵 ↑m ( 𝑁 × 𝑀 ) ) ) |
| 77 | elmapi | ⊢ ( ( 𝑋 𝐹 𝐼 ) ∈ ( 𝐵 ↑m ( 𝑁 × 𝑀 ) ) → ( 𝑋 𝐹 𝐼 ) : ( 𝑁 × 𝑀 ) ⟶ 𝐵 ) | |
| 78 | 76 77 | syl | ⊢ ( 𝜑 → ( 𝑋 𝐹 𝐼 ) : ( 𝑁 × 𝑀 ) ⟶ 𝐵 ) |
| 79 | 78 | ffnd | ⊢ ( 𝜑 → ( 𝑋 𝐹 𝐼 ) Fn ( 𝑁 × 𝑀 ) ) |
| 80 | 24 | ffnd | ⊢ ( 𝜑 → 𝑋 Fn ( 𝑁 × 𝑀 ) ) |
| 81 | eqfnov2 | ⊢ ( ( ( 𝑋 𝐹 𝐼 ) Fn ( 𝑁 × 𝑀 ) ∧ 𝑋 Fn ( 𝑁 × 𝑀 ) ) → ( ( 𝑋 𝐹 𝐼 ) = 𝑋 ↔ ∀ 𝑙 ∈ 𝑁 ∀ 𝑚 ∈ 𝑀 ( 𝑙 ( 𝑋 𝐹 𝐼 ) 𝑚 ) = ( 𝑙 𝑋 𝑚 ) ) ) | |
| 82 | 79 80 81 | syl2anc | ⊢ ( 𝜑 → ( ( 𝑋 𝐹 𝐼 ) = 𝑋 ↔ ∀ 𝑙 ∈ 𝑁 ∀ 𝑚 ∈ 𝑀 ( 𝑙 ( 𝑋 𝐹 𝐼 ) 𝑚 ) = ( 𝑙 𝑋 𝑚 ) ) ) |
| 83 | 75 82 | mpbird | ⊢ ( 𝜑 → ( 𝑋 𝐹 𝐼 ) = 𝑋 ) |