This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma 2 for mapfien . (Contributed by AV, 3-Jul-2019) (Revised by AV, 28-Jul-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mapfien.s | |- S = { x e. ( B ^m A ) | x finSupp Z } |
|
| mapfien.t | |- T = { x e. ( D ^m C ) | x finSupp W } |
||
| mapfien.w | |- W = ( G ` Z ) |
||
| mapfien.f | |- ( ph -> F : C -1-1-onto-> A ) |
||
| mapfien.g | |- ( ph -> G : B -1-1-onto-> D ) |
||
| mapfien.a | |- ( ph -> A e. U ) |
||
| mapfien.b | |- ( ph -> B e. V ) |
||
| mapfien.c | |- ( ph -> C e. X ) |
||
| mapfien.d | |- ( ph -> D e. Y ) |
||
| mapfien.z | |- ( ph -> Z e. B ) |
||
| Assertion | mapfienlem2 | |- ( ( ph /\ g e. T ) -> ( ( `' G o. g ) o. `' F ) finSupp Z ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mapfien.s | |- S = { x e. ( B ^m A ) | x finSupp Z } |
|
| 2 | mapfien.t | |- T = { x e. ( D ^m C ) | x finSupp W } |
|
| 3 | mapfien.w | |- W = ( G ` Z ) |
|
| 4 | mapfien.f | |- ( ph -> F : C -1-1-onto-> A ) |
|
| 5 | mapfien.g | |- ( ph -> G : B -1-1-onto-> D ) |
|
| 6 | mapfien.a | |- ( ph -> A e. U ) |
|
| 7 | mapfien.b | |- ( ph -> B e. V ) |
|
| 8 | mapfien.c | |- ( ph -> C e. X ) |
|
| 9 | mapfien.d | |- ( ph -> D e. Y ) |
|
| 10 | mapfien.z | |- ( ph -> Z e. B ) |
|
| 11 | 10 | adantr | |- ( ( ph /\ g e. T ) -> Z e. B ) |
| 12 | f1of | |- ( G : B -1-1-onto-> D -> G : B --> D ) |
|
| 13 | 5 12 | syl | |- ( ph -> G : B --> D ) |
| 14 | 13 10 | ffvelcdmd | |- ( ph -> ( G ` Z ) e. D ) |
| 15 | 3 14 | eqeltrid | |- ( ph -> W e. D ) |
| 16 | 15 | adantr | |- ( ( ph /\ g e. T ) -> W e. D ) |
| 17 | elrabi | |- ( g e. { x e. ( D ^m C ) | x finSupp W } -> g e. ( D ^m C ) ) |
|
| 18 | elmapi | |- ( g e. ( D ^m C ) -> g : C --> D ) |
|
| 19 | 17 18 | syl | |- ( g e. { x e. ( D ^m C ) | x finSupp W } -> g : C --> D ) |
| 20 | 19 2 | eleq2s | |- ( g e. T -> g : C --> D ) |
| 21 | 20 | adantl | |- ( ( ph /\ g e. T ) -> g : C --> D ) |
| 22 | f1ocnv | |- ( G : B -1-1-onto-> D -> `' G : D -1-1-onto-> B ) |
|
| 23 | f1of | |- ( `' G : D -1-1-onto-> B -> `' G : D --> B ) |
|
| 24 | 5 22 23 | 3syl | |- ( ph -> `' G : D --> B ) |
| 25 | 24 | adantr | |- ( ( ph /\ g e. T ) -> `' G : D --> B ) |
| 26 | ssidd | |- ( ( ph /\ g e. T ) -> D C_ D ) |
|
| 27 | 8 | adantr | |- ( ( ph /\ g e. T ) -> C e. X ) |
| 28 | 9 | adantr | |- ( ( ph /\ g e. T ) -> D e. Y ) |
| 29 | breq1 | |- ( x = g -> ( x finSupp W <-> g finSupp W ) ) |
|
| 30 | 29 | elrab | |- ( g e. { x e. ( D ^m C ) | x finSupp W } <-> ( g e. ( D ^m C ) /\ g finSupp W ) ) |
| 31 | 30 | simprbi | |- ( g e. { x e. ( D ^m C ) | x finSupp W } -> g finSupp W ) |
| 32 | 31 2 | eleq2s | |- ( g e. T -> g finSupp W ) |
| 33 | 32 | adantl | |- ( ( ph /\ g e. T ) -> g finSupp W ) |
| 34 | 5 10 | jca | |- ( ph -> ( G : B -1-1-onto-> D /\ Z e. B ) ) |
| 35 | 3 | eqcomi | |- ( G ` Z ) = W |
| 36 | 34 35 | jctir | |- ( ph -> ( ( G : B -1-1-onto-> D /\ Z e. B ) /\ ( G ` Z ) = W ) ) |
| 37 | 36 | adantr | |- ( ( ph /\ g e. T ) -> ( ( G : B -1-1-onto-> D /\ Z e. B ) /\ ( G ` Z ) = W ) ) |
| 38 | f1ocnvfv | |- ( ( G : B -1-1-onto-> D /\ Z e. B ) -> ( ( G ` Z ) = W -> ( `' G ` W ) = Z ) ) |
|
| 39 | 38 | imp | |- ( ( ( G : B -1-1-onto-> D /\ Z e. B ) /\ ( G ` Z ) = W ) -> ( `' G ` W ) = Z ) |
| 40 | 37 39 | syl | |- ( ( ph /\ g e. T ) -> ( `' G ` W ) = Z ) |
| 41 | 11 16 21 25 26 27 28 33 40 | fsuppcor | |- ( ( ph /\ g e. T ) -> ( `' G o. g ) finSupp Z ) |
| 42 | f1ocnv | |- ( F : C -1-1-onto-> A -> `' F : A -1-1-onto-> C ) |
|
| 43 | f1of1 | |- ( `' F : A -1-1-onto-> C -> `' F : A -1-1-> C ) |
|
| 44 | 4 42 43 | 3syl | |- ( ph -> `' F : A -1-1-> C ) |
| 45 | 44 | adantr | |- ( ( ph /\ g e. T ) -> `' F : A -1-1-> C ) |
| 46 | 13 7 | jca | |- ( ph -> ( G : B --> D /\ B e. V ) ) |
| 47 | fex | |- ( ( G : B --> D /\ B e. V ) -> G e. _V ) |
|
| 48 | cnvexg | |- ( G e. _V -> `' G e. _V ) |
|
| 49 | 46 47 48 | 3syl | |- ( ph -> `' G e. _V ) |
| 50 | coexg | |- ( ( `' G e. _V /\ g e. T ) -> ( `' G o. g ) e. _V ) |
|
| 51 | 49 50 | sylan | |- ( ( ph /\ g e. T ) -> ( `' G o. g ) e. _V ) |
| 52 | 41 45 11 51 | fsuppco | |- ( ( ph /\ g e. T ) -> ( ( `' G o. g ) o. `' F ) finSupp Z ) |