This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Equinumerousity relation for sets of finitely supported functions. (Contributed by Stefan O'Rear, 9-Jul-2015) (Revised by AV, 7-Jul-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mapfien2.s | |- S = { x e. ( B ^m A ) | x finSupp .0. } |
|
| mapfien2.t | |- T = { x e. ( D ^m C ) | x finSupp W } |
||
| mapfien2.ac | |- ( ph -> A ~~ C ) |
||
| mapfien2.bd | |- ( ph -> B ~~ D ) |
||
| mapfien2.z | |- ( ph -> .0. e. B ) |
||
| mapfien2.w | |- ( ph -> W e. D ) |
||
| Assertion | mapfien2 | |- ( ph -> S ~~ T ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mapfien2.s | |- S = { x e. ( B ^m A ) | x finSupp .0. } |
|
| 2 | mapfien2.t | |- T = { x e. ( D ^m C ) | x finSupp W } |
|
| 3 | mapfien2.ac | |- ( ph -> A ~~ C ) |
|
| 4 | mapfien2.bd | |- ( ph -> B ~~ D ) |
|
| 5 | mapfien2.z | |- ( ph -> .0. e. B ) |
|
| 6 | mapfien2.w | |- ( ph -> W e. D ) |
|
| 7 | enfixsn | |- ( ( .0. e. B /\ W e. D /\ B ~~ D ) -> E. y ( y : B -1-1-onto-> D /\ ( y ` .0. ) = W ) ) |
|
| 8 | 5 6 4 7 | syl3anc | |- ( ph -> E. y ( y : B -1-1-onto-> D /\ ( y ` .0. ) = W ) ) |
| 9 | bren | |- ( A ~~ C <-> E. z z : A -1-1-onto-> C ) |
|
| 10 | 3 9 | sylib | |- ( ph -> E. z z : A -1-1-onto-> C ) |
| 11 | eqid | |- { x e. ( D ^m C ) | x finSupp ( y ` .0. ) } = { x e. ( D ^m C ) | x finSupp ( y ` .0. ) } |
|
| 12 | eqid | |- ( y ` .0. ) = ( y ` .0. ) |
|
| 13 | f1ocnv | |- ( z : A -1-1-onto-> C -> `' z : C -1-1-onto-> A ) |
|
| 14 | 13 | 3ad2ant2 | |- ( ( ph /\ z : A -1-1-onto-> C /\ y : B -1-1-onto-> D ) -> `' z : C -1-1-onto-> A ) |
| 15 | simp3 | |- ( ( ph /\ z : A -1-1-onto-> C /\ y : B -1-1-onto-> D ) -> y : B -1-1-onto-> D ) |
|
| 16 | 3 | 3ad2ant1 | |- ( ( ph /\ z : A -1-1-onto-> C /\ y : B -1-1-onto-> D ) -> A ~~ C ) |
| 17 | relen | |- Rel ~~ |
|
| 18 | 17 | brrelex1i | |- ( A ~~ C -> A e. _V ) |
| 19 | 16 18 | syl | |- ( ( ph /\ z : A -1-1-onto-> C /\ y : B -1-1-onto-> D ) -> A e. _V ) |
| 20 | 4 | 3ad2ant1 | |- ( ( ph /\ z : A -1-1-onto-> C /\ y : B -1-1-onto-> D ) -> B ~~ D ) |
| 21 | 17 | brrelex1i | |- ( B ~~ D -> B e. _V ) |
| 22 | 20 21 | syl | |- ( ( ph /\ z : A -1-1-onto-> C /\ y : B -1-1-onto-> D ) -> B e. _V ) |
| 23 | 17 | brrelex2i | |- ( A ~~ C -> C e. _V ) |
| 24 | 16 23 | syl | |- ( ( ph /\ z : A -1-1-onto-> C /\ y : B -1-1-onto-> D ) -> C e. _V ) |
| 25 | 17 | brrelex2i | |- ( B ~~ D -> D e. _V ) |
| 26 | 20 25 | syl | |- ( ( ph /\ z : A -1-1-onto-> C /\ y : B -1-1-onto-> D ) -> D e. _V ) |
| 27 | 5 | 3ad2ant1 | |- ( ( ph /\ z : A -1-1-onto-> C /\ y : B -1-1-onto-> D ) -> .0. e. B ) |
| 28 | 1 11 12 14 15 19 22 24 26 27 | mapfien | |- ( ( ph /\ z : A -1-1-onto-> C /\ y : B -1-1-onto-> D ) -> ( w e. S |-> ( y o. ( w o. `' z ) ) ) : S -1-1-onto-> { x e. ( D ^m C ) | x finSupp ( y ` .0. ) } ) |
| 29 | ovex | |- ( B ^m A ) e. _V |
|
| 30 | 1 29 | rabex2 | |- S e. _V |
| 31 | 30 | f1oen | |- ( ( w e. S |-> ( y o. ( w o. `' z ) ) ) : S -1-1-onto-> { x e. ( D ^m C ) | x finSupp ( y ` .0. ) } -> S ~~ { x e. ( D ^m C ) | x finSupp ( y ` .0. ) } ) |
| 32 | 28 31 | syl | |- ( ( ph /\ z : A -1-1-onto-> C /\ y : B -1-1-onto-> D ) -> S ~~ { x e. ( D ^m C ) | x finSupp ( y ` .0. ) } ) |
| 33 | 32 | 3adant3r | |- ( ( ph /\ z : A -1-1-onto-> C /\ ( y : B -1-1-onto-> D /\ ( y ` .0. ) = W ) ) -> S ~~ { x e. ( D ^m C ) | x finSupp ( y ` .0. ) } ) |
| 34 | breq2 | |- ( ( y ` .0. ) = W -> ( x finSupp ( y ` .0. ) <-> x finSupp W ) ) |
|
| 35 | 34 | rabbidv | |- ( ( y ` .0. ) = W -> { x e. ( D ^m C ) | x finSupp ( y ` .0. ) } = { x e. ( D ^m C ) | x finSupp W } ) |
| 36 | 35 2 | eqtr4di | |- ( ( y ` .0. ) = W -> { x e. ( D ^m C ) | x finSupp ( y ` .0. ) } = T ) |
| 37 | 36 | adantl | |- ( ( y : B -1-1-onto-> D /\ ( y ` .0. ) = W ) -> { x e. ( D ^m C ) | x finSupp ( y ` .0. ) } = T ) |
| 38 | 37 | 3ad2ant3 | |- ( ( ph /\ z : A -1-1-onto-> C /\ ( y : B -1-1-onto-> D /\ ( y ` .0. ) = W ) ) -> { x e. ( D ^m C ) | x finSupp ( y ` .0. ) } = T ) |
| 39 | 33 38 | breqtrd | |- ( ( ph /\ z : A -1-1-onto-> C /\ ( y : B -1-1-onto-> D /\ ( y ` .0. ) = W ) ) -> S ~~ T ) |
| 40 | 39 | 3exp | |- ( ph -> ( z : A -1-1-onto-> C -> ( ( y : B -1-1-onto-> D /\ ( y ` .0. ) = W ) -> S ~~ T ) ) ) |
| 41 | 40 | exlimdv | |- ( ph -> ( E. z z : A -1-1-onto-> C -> ( ( y : B -1-1-onto-> D /\ ( y ` .0. ) = W ) -> S ~~ T ) ) ) |
| 42 | 10 41 | mpd | |- ( ph -> ( ( y : B -1-1-onto-> D /\ ( y ` .0. ) = W ) -> S ~~ T ) ) |
| 43 | 42 | exlimdv | |- ( ph -> ( E. y ( y : B -1-1-onto-> D /\ ( y ` .0. ) = W ) -> S ~~ T ) ) |
| 44 | 8 43 | mpd | |- ( ph -> S ~~ T ) |