This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A cardinal power with exponent 2 is equivalent to a Cartesian product with itself. (Contributed by Mario Carneiro, 31-May-2015) (Proof shortened by AV, 17-Jul-2022)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | map2xp | |- ( A e. V -> ( A ^m 2o ) ~~ ( A X. A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df2o3 | |- 2o = { (/) , 1o } |
|
| 2 | df-pr | |- { (/) , 1o } = ( { (/) } u. { 1o } ) |
|
| 3 | 1 2 | eqtri | |- 2o = ( { (/) } u. { 1o } ) |
| 4 | 3 | oveq2i | |- ( A ^m 2o ) = ( A ^m ( { (/) } u. { 1o } ) ) |
| 5 | snex | |- { (/) } e. _V |
|
| 6 | 5 | a1i | |- ( A e. V -> { (/) } e. _V ) |
| 7 | snex | |- { 1o } e. _V |
|
| 8 | 7 | a1i | |- ( A e. V -> { 1o } e. _V ) |
| 9 | id | |- ( A e. V -> A e. V ) |
|
| 10 | 1n0 | |- 1o =/= (/) |
|
| 11 | 10 | neii | |- -. 1o = (/) |
| 12 | elsni | |- ( 1o e. { (/) } -> 1o = (/) ) |
|
| 13 | 11 12 | mto | |- -. 1o e. { (/) } |
| 14 | disjsn | |- ( ( { (/) } i^i { 1o } ) = (/) <-> -. 1o e. { (/) } ) |
|
| 15 | 13 14 | mpbir | |- ( { (/) } i^i { 1o } ) = (/) |
| 16 | 15 | a1i | |- ( A e. V -> ( { (/) } i^i { 1o } ) = (/) ) |
| 17 | mapunen | |- ( ( ( { (/) } e. _V /\ { 1o } e. _V /\ A e. V ) /\ ( { (/) } i^i { 1o } ) = (/) ) -> ( A ^m ( { (/) } u. { 1o } ) ) ~~ ( ( A ^m { (/) } ) X. ( A ^m { 1o } ) ) ) |
|
| 18 | 6 8 9 16 17 | syl31anc | |- ( A e. V -> ( A ^m ( { (/) } u. { 1o } ) ) ~~ ( ( A ^m { (/) } ) X. ( A ^m { 1o } ) ) ) |
| 19 | 4 18 | eqbrtrid | |- ( A e. V -> ( A ^m 2o ) ~~ ( ( A ^m { (/) } ) X. ( A ^m { 1o } ) ) ) |
| 20 | 0ex | |- (/) e. _V |
|
| 21 | 20 | a1i | |- ( A e. V -> (/) e. _V ) |
| 22 | 9 21 | mapsnend | |- ( A e. V -> ( A ^m { (/) } ) ~~ A ) |
| 23 | 1oex | |- 1o e. _V |
|
| 24 | 23 | a1i | |- ( A e. V -> 1o e. _V ) |
| 25 | 9 24 | mapsnend | |- ( A e. V -> ( A ^m { 1o } ) ~~ A ) |
| 26 | xpen | |- ( ( ( A ^m { (/) } ) ~~ A /\ ( A ^m { 1o } ) ~~ A ) -> ( ( A ^m { (/) } ) X. ( A ^m { 1o } ) ) ~~ ( A X. A ) ) |
|
| 27 | 22 25 26 | syl2anc | |- ( A e. V -> ( ( A ^m { (/) } ) X. ( A ^m { 1o } ) ) ~~ ( A X. A ) ) |
| 28 | entr | |- ( ( ( A ^m 2o ) ~~ ( ( A ^m { (/) } ) X. ( A ^m { 1o } ) ) /\ ( ( A ^m { (/) } ) X. ( A ^m { 1o } ) ) ~~ ( A X. A ) ) -> ( A ^m 2o ) ~~ ( A X. A ) ) |
|
| 29 | 19 27 28 | syl2anc | |- ( A e. V -> ( A ^m 2o ) ~~ ( A X. A ) ) |