This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Behavior of transposes in matrix products, see also the statement in Lang p. 505. (Contributed by Stefan O'Rear, 9-Jul-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mamutpos.f | ⊢ 𝐹 = ( 𝑅 maMul 〈 𝑀 , 𝑁 , 𝑃 〉 ) | |
| mamutpos.g | ⊢ 𝐺 = ( 𝑅 maMul 〈 𝑃 , 𝑁 , 𝑀 〉 ) | ||
| mamutpos.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | ||
| mamutpos.r | ⊢ ( 𝜑 → 𝑅 ∈ CRing ) | ||
| mamutpos.m | ⊢ ( 𝜑 → 𝑀 ∈ Fin ) | ||
| mamutpos.n | ⊢ ( 𝜑 → 𝑁 ∈ Fin ) | ||
| mamutpos.p | ⊢ ( 𝜑 → 𝑃 ∈ Fin ) | ||
| mamutpos.x | ⊢ ( 𝜑 → 𝑋 ∈ ( 𝐵 ↑m ( 𝑀 × 𝑁 ) ) ) | ||
| mamutpos.y | ⊢ ( 𝜑 → 𝑌 ∈ ( 𝐵 ↑m ( 𝑁 × 𝑃 ) ) ) | ||
| Assertion | mamutpos | ⊢ ( 𝜑 → tpos ( 𝑋 𝐹 𝑌 ) = ( tpos 𝑌 𝐺 tpos 𝑋 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mamutpos.f | ⊢ 𝐹 = ( 𝑅 maMul 〈 𝑀 , 𝑁 , 𝑃 〉 ) | |
| 2 | mamutpos.g | ⊢ 𝐺 = ( 𝑅 maMul 〈 𝑃 , 𝑁 , 𝑀 〉 ) | |
| 3 | mamutpos.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| 4 | mamutpos.r | ⊢ ( 𝜑 → 𝑅 ∈ CRing ) | |
| 5 | mamutpos.m | ⊢ ( 𝜑 → 𝑀 ∈ Fin ) | |
| 6 | mamutpos.n | ⊢ ( 𝜑 → 𝑁 ∈ Fin ) | |
| 7 | mamutpos.p | ⊢ ( 𝜑 → 𝑃 ∈ Fin ) | |
| 8 | mamutpos.x | ⊢ ( 𝜑 → 𝑋 ∈ ( 𝐵 ↑m ( 𝑀 × 𝑁 ) ) ) | |
| 9 | mamutpos.y | ⊢ ( 𝜑 → 𝑌 ∈ ( 𝐵 ↑m ( 𝑁 × 𝑃 ) ) ) | |
| 10 | eqid | ⊢ ( 𝑗 ∈ 𝑀 , 𝑖 ∈ 𝑃 ↦ ( 𝑅 Σg ( 𝑘 ∈ 𝑁 ↦ ( ( 𝑗 𝑋 𝑘 ) ( .r ‘ 𝑅 ) ( 𝑘 𝑌 𝑖 ) ) ) ) ) = ( 𝑗 ∈ 𝑀 , 𝑖 ∈ 𝑃 ↦ ( 𝑅 Σg ( 𝑘 ∈ 𝑁 ↦ ( ( 𝑗 𝑋 𝑘 ) ( .r ‘ 𝑅 ) ( 𝑘 𝑌 𝑖 ) ) ) ) ) | |
| 11 | 10 | tposmpo | ⊢ tpos ( 𝑗 ∈ 𝑀 , 𝑖 ∈ 𝑃 ↦ ( 𝑅 Σg ( 𝑘 ∈ 𝑁 ↦ ( ( 𝑗 𝑋 𝑘 ) ( .r ‘ 𝑅 ) ( 𝑘 𝑌 𝑖 ) ) ) ) ) = ( 𝑖 ∈ 𝑃 , 𝑗 ∈ 𝑀 ↦ ( 𝑅 Σg ( 𝑘 ∈ 𝑁 ↦ ( ( 𝑗 𝑋 𝑘 ) ( .r ‘ 𝑅 ) ( 𝑘 𝑌 𝑖 ) ) ) ) ) |
| 12 | simpl1 | ⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑃 ∧ 𝑗 ∈ 𝑀 ) ∧ 𝑘 ∈ 𝑁 ) → 𝜑 ) | |
| 13 | 12 4 | syl | ⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑃 ∧ 𝑗 ∈ 𝑀 ) ∧ 𝑘 ∈ 𝑁 ) → 𝑅 ∈ CRing ) |
| 14 | elmapi | ⊢ ( 𝑋 ∈ ( 𝐵 ↑m ( 𝑀 × 𝑁 ) ) → 𝑋 : ( 𝑀 × 𝑁 ) ⟶ 𝐵 ) | |
| 15 | 12 8 14 | 3syl | ⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑃 ∧ 𝑗 ∈ 𝑀 ) ∧ 𝑘 ∈ 𝑁 ) → 𝑋 : ( 𝑀 × 𝑁 ) ⟶ 𝐵 ) |
| 16 | simpl3 | ⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑃 ∧ 𝑗 ∈ 𝑀 ) ∧ 𝑘 ∈ 𝑁 ) → 𝑗 ∈ 𝑀 ) | |
| 17 | simpr | ⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑃 ∧ 𝑗 ∈ 𝑀 ) ∧ 𝑘 ∈ 𝑁 ) → 𝑘 ∈ 𝑁 ) | |
| 18 | 15 16 17 | fovcdmd | ⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑃 ∧ 𝑗 ∈ 𝑀 ) ∧ 𝑘 ∈ 𝑁 ) → ( 𝑗 𝑋 𝑘 ) ∈ 𝐵 ) |
| 19 | elmapi | ⊢ ( 𝑌 ∈ ( 𝐵 ↑m ( 𝑁 × 𝑃 ) ) → 𝑌 : ( 𝑁 × 𝑃 ) ⟶ 𝐵 ) | |
| 20 | 12 9 19 | 3syl | ⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑃 ∧ 𝑗 ∈ 𝑀 ) ∧ 𝑘 ∈ 𝑁 ) → 𝑌 : ( 𝑁 × 𝑃 ) ⟶ 𝐵 ) |
| 21 | simpl2 | ⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑃 ∧ 𝑗 ∈ 𝑀 ) ∧ 𝑘 ∈ 𝑁 ) → 𝑖 ∈ 𝑃 ) | |
| 22 | 20 17 21 | fovcdmd | ⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑃 ∧ 𝑗 ∈ 𝑀 ) ∧ 𝑘 ∈ 𝑁 ) → ( 𝑘 𝑌 𝑖 ) ∈ 𝐵 ) |
| 23 | eqid | ⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) | |
| 24 | 3 23 | crngcom | ⊢ ( ( 𝑅 ∈ CRing ∧ ( 𝑗 𝑋 𝑘 ) ∈ 𝐵 ∧ ( 𝑘 𝑌 𝑖 ) ∈ 𝐵 ) → ( ( 𝑗 𝑋 𝑘 ) ( .r ‘ 𝑅 ) ( 𝑘 𝑌 𝑖 ) ) = ( ( 𝑘 𝑌 𝑖 ) ( .r ‘ 𝑅 ) ( 𝑗 𝑋 𝑘 ) ) ) |
| 25 | 13 18 22 24 | syl3anc | ⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑃 ∧ 𝑗 ∈ 𝑀 ) ∧ 𝑘 ∈ 𝑁 ) → ( ( 𝑗 𝑋 𝑘 ) ( .r ‘ 𝑅 ) ( 𝑘 𝑌 𝑖 ) ) = ( ( 𝑘 𝑌 𝑖 ) ( .r ‘ 𝑅 ) ( 𝑗 𝑋 𝑘 ) ) ) |
| 26 | ovtpos | ⊢ ( 𝑖 tpos 𝑌 𝑘 ) = ( 𝑘 𝑌 𝑖 ) | |
| 27 | ovtpos | ⊢ ( 𝑘 tpos 𝑋 𝑗 ) = ( 𝑗 𝑋 𝑘 ) | |
| 28 | 26 27 | oveq12i | ⊢ ( ( 𝑖 tpos 𝑌 𝑘 ) ( .r ‘ 𝑅 ) ( 𝑘 tpos 𝑋 𝑗 ) ) = ( ( 𝑘 𝑌 𝑖 ) ( .r ‘ 𝑅 ) ( 𝑗 𝑋 𝑘 ) ) |
| 29 | 25 28 | eqtr4di | ⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑃 ∧ 𝑗 ∈ 𝑀 ) ∧ 𝑘 ∈ 𝑁 ) → ( ( 𝑗 𝑋 𝑘 ) ( .r ‘ 𝑅 ) ( 𝑘 𝑌 𝑖 ) ) = ( ( 𝑖 tpos 𝑌 𝑘 ) ( .r ‘ 𝑅 ) ( 𝑘 tpos 𝑋 𝑗 ) ) ) |
| 30 | 29 | mpteq2dva | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑃 ∧ 𝑗 ∈ 𝑀 ) → ( 𝑘 ∈ 𝑁 ↦ ( ( 𝑗 𝑋 𝑘 ) ( .r ‘ 𝑅 ) ( 𝑘 𝑌 𝑖 ) ) ) = ( 𝑘 ∈ 𝑁 ↦ ( ( 𝑖 tpos 𝑌 𝑘 ) ( .r ‘ 𝑅 ) ( 𝑘 tpos 𝑋 𝑗 ) ) ) ) |
| 31 | 30 | oveq2d | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑃 ∧ 𝑗 ∈ 𝑀 ) → ( 𝑅 Σg ( 𝑘 ∈ 𝑁 ↦ ( ( 𝑗 𝑋 𝑘 ) ( .r ‘ 𝑅 ) ( 𝑘 𝑌 𝑖 ) ) ) ) = ( 𝑅 Σg ( 𝑘 ∈ 𝑁 ↦ ( ( 𝑖 tpos 𝑌 𝑘 ) ( .r ‘ 𝑅 ) ( 𝑘 tpos 𝑋 𝑗 ) ) ) ) ) |
| 32 | 31 | mpoeq3dva | ⊢ ( 𝜑 → ( 𝑖 ∈ 𝑃 , 𝑗 ∈ 𝑀 ↦ ( 𝑅 Σg ( 𝑘 ∈ 𝑁 ↦ ( ( 𝑗 𝑋 𝑘 ) ( .r ‘ 𝑅 ) ( 𝑘 𝑌 𝑖 ) ) ) ) ) = ( 𝑖 ∈ 𝑃 , 𝑗 ∈ 𝑀 ↦ ( 𝑅 Σg ( 𝑘 ∈ 𝑁 ↦ ( ( 𝑖 tpos 𝑌 𝑘 ) ( .r ‘ 𝑅 ) ( 𝑘 tpos 𝑋 𝑗 ) ) ) ) ) ) |
| 33 | 11 32 | eqtrid | ⊢ ( 𝜑 → tpos ( 𝑗 ∈ 𝑀 , 𝑖 ∈ 𝑃 ↦ ( 𝑅 Σg ( 𝑘 ∈ 𝑁 ↦ ( ( 𝑗 𝑋 𝑘 ) ( .r ‘ 𝑅 ) ( 𝑘 𝑌 𝑖 ) ) ) ) ) = ( 𝑖 ∈ 𝑃 , 𝑗 ∈ 𝑀 ↦ ( 𝑅 Σg ( 𝑘 ∈ 𝑁 ↦ ( ( 𝑖 tpos 𝑌 𝑘 ) ( .r ‘ 𝑅 ) ( 𝑘 tpos 𝑋 𝑗 ) ) ) ) ) ) |
| 34 | 1 3 23 4 5 6 7 8 9 | mamuval | ⊢ ( 𝜑 → ( 𝑋 𝐹 𝑌 ) = ( 𝑗 ∈ 𝑀 , 𝑖 ∈ 𝑃 ↦ ( 𝑅 Σg ( 𝑘 ∈ 𝑁 ↦ ( ( 𝑗 𝑋 𝑘 ) ( .r ‘ 𝑅 ) ( 𝑘 𝑌 𝑖 ) ) ) ) ) ) |
| 35 | 34 | tposeqd | ⊢ ( 𝜑 → tpos ( 𝑋 𝐹 𝑌 ) = tpos ( 𝑗 ∈ 𝑀 , 𝑖 ∈ 𝑃 ↦ ( 𝑅 Σg ( 𝑘 ∈ 𝑁 ↦ ( ( 𝑗 𝑋 𝑘 ) ( .r ‘ 𝑅 ) ( 𝑘 𝑌 𝑖 ) ) ) ) ) ) |
| 36 | tposmap | ⊢ ( 𝑌 ∈ ( 𝐵 ↑m ( 𝑁 × 𝑃 ) ) → tpos 𝑌 ∈ ( 𝐵 ↑m ( 𝑃 × 𝑁 ) ) ) | |
| 37 | 9 36 | syl | ⊢ ( 𝜑 → tpos 𝑌 ∈ ( 𝐵 ↑m ( 𝑃 × 𝑁 ) ) ) |
| 38 | tposmap | ⊢ ( 𝑋 ∈ ( 𝐵 ↑m ( 𝑀 × 𝑁 ) ) → tpos 𝑋 ∈ ( 𝐵 ↑m ( 𝑁 × 𝑀 ) ) ) | |
| 39 | 8 38 | syl | ⊢ ( 𝜑 → tpos 𝑋 ∈ ( 𝐵 ↑m ( 𝑁 × 𝑀 ) ) ) |
| 40 | 2 3 23 4 7 6 5 37 39 | mamuval | ⊢ ( 𝜑 → ( tpos 𝑌 𝐺 tpos 𝑋 ) = ( 𝑖 ∈ 𝑃 , 𝑗 ∈ 𝑀 ↦ ( 𝑅 Σg ( 𝑘 ∈ 𝑁 ↦ ( ( 𝑖 tpos 𝑌 𝑘 ) ( .r ‘ 𝑅 ) ( 𝑘 tpos 𝑋 𝑗 ) ) ) ) ) ) |
| 41 | 33 35 40 | 3eqtr4d | ⊢ ( 𝜑 → tpos ( 𝑋 𝐹 𝑌 ) = ( tpos 𝑌 𝐺 tpos 𝑋 ) ) |