This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Multiplication of two matrices. (Contributed by Stefan O'Rear, 2-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mamufval.f | ⊢ 𝐹 = ( 𝑅 maMul 〈 𝑀 , 𝑁 , 𝑃 〉 ) | |
| mamufval.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | ||
| mamufval.t | ⊢ · = ( .r ‘ 𝑅 ) | ||
| mamufval.r | ⊢ ( 𝜑 → 𝑅 ∈ 𝑉 ) | ||
| mamufval.m | ⊢ ( 𝜑 → 𝑀 ∈ Fin ) | ||
| mamufval.n | ⊢ ( 𝜑 → 𝑁 ∈ Fin ) | ||
| mamufval.p | ⊢ ( 𝜑 → 𝑃 ∈ Fin ) | ||
| mamuval.x | ⊢ ( 𝜑 → 𝑋 ∈ ( 𝐵 ↑m ( 𝑀 × 𝑁 ) ) ) | ||
| mamuval.y | ⊢ ( 𝜑 → 𝑌 ∈ ( 𝐵 ↑m ( 𝑁 × 𝑃 ) ) ) | ||
| Assertion | mamuval | ⊢ ( 𝜑 → ( 𝑋 𝐹 𝑌 ) = ( 𝑖 ∈ 𝑀 , 𝑘 ∈ 𝑃 ↦ ( 𝑅 Σg ( 𝑗 ∈ 𝑁 ↦ ( ( 𝑖 𝑋 𝑗 ) · ( 𝑗 𝑌 𝑘 ) ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mamufval.f | ⊢ 𝐹 = ( 𝑅 maMul 〈 𝑀 , 𝑁 , 𝑃 〉 ) | |
| 2 | mamufval.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| 3 | mamufval.t | ⊢ · = ( .r ‘ 𝑅 ) | |
| 4 | mamufval.r | ⊢ ( 𝜑 → 𝑅 ∈ 𝑉 ) | |
| 5 | mamufval.m | ⊢ ( 𝜑 → 𝑀 ∈ Fin ) | |
| 6 | mamufval.n | ⊢ ( 𝜑 → 𝑁 ∈ Fin ) | |
| 7 | mamufval.p | ⊢ ( 𝜑 → 𝑃 ∈ Fin ) | |
| 8 | mamuval.x | ⊢ ( 𝜑 → 𝑋 ∈ ( 𝐵 ↑m ( 𝑀 × 𝑁 ) ) ) | |
| 9 | mamuval.y | ⊢ ( 𝜑 → 𝑌 ∈ ( 𝐵 ↑m ( 𝑁 × 𝑃 ) ) ) | |
| 10 | 1 2 3 4 5 6 7 | mamufval | ⊢ ( 𝜑 → 𝐹 = ( 𝑥 ∈ ( 𝐵 ↑m ( 𝑀 × 𝑁 ) ) , 𝑦 ∈ ( 𝐵 ↑m ( 𝑁 × 𝑃 ) ) ↦ ( 𝑖 ∈ 𝑀 , 𝑘 ∈ 𝑃 ↦ ( 𝑅 Σg ( 𝑗 ∈ 𝑁 ↦ ( ( 𝑖 𝑥 𝑗 ) · ( 𝑗 𝑦 𝑘 ) ) ) ) ) ) ) |
| 11 | oveq | ⊢ ( 𝑥 = 𝑋 → ( 𝑖 𝑥 𝑗 ) = ( 𝑖 𝑋 𝑗 ) ) | |
| 12 | oveq | ⊢ ( 𝑦 = 𝑌 → ( 𝑗 𝑦 𝑘 ) = ( 𝑗 𝑌 𝑘 ) ) | |
| 13 | 11 12 | oveqan12d | ⊢ ( ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑌 ) → ( ( 𝑖 𝑥 𝑗 ) · ( 𝑗 𝑦 𝑘 ) ) = ( ( 𝑖 𝑋 𝑗 ) · ( 𝑗 𝑌 𝑘 ) ) ) |
| 14 | 13 | adantl | ⊢ ( ( 𝜑 ∧ ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑌 ) ) → ( ( 𝑖 𝑥 𝑗 ) · ( 𝑗 𝑦 𝑘 ) ) = ( ( 𝑖 𝑋 𝑗 ) · ( 𝑗 𝑌 𝑘 ) ) ) |
| 15 | 14 | mpteq2dv | ⊢ ( ( 𝜑 ∧ ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑌 ) ) → ( 𝑗 ∈ 𝑁 ↦ ( ( 𝑖 𝑥 𝑗 ) · ( 𝑗 𝑦 𝑘 ) ) ) = ( 𝑗 ∈ 𝑁 ↦ ( ( 𝑖 𝑋 𝑗 ) · ( 𝑗 𝑌 𝑘 ) ) ) ) |
| 16 | 15 | oveq2d | ⊢ ( ( 𝜑 ∧ ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑌 ) ) → ( 𝑅 Σg ( 𝑗 ∈ 𝑁 ↦ ( ( 𝑖 𝑥 𝑗 ) · ( 𝑗 𝑦 𝑘 ) ) ) ) = ( 𝑅 Σg ( 𝑗 ∈ 𝑁 ↦ ( ( 𝑖 𝑋 𝑗 ) · ( 𝑗 𝑌 𝑘 ) ) ) ) ) |
| 17 | 16 | mpoeq3dv | ⊢ ( ( 𝜑 ∧ ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑌 ) ) → ( 𝑖 ∈ 𝑀 , 𝑘 ∈ 𝑃 ↦ ( 𝑅 Σg ( 𝑗 ∈ 𝑁 ↦ ( ( 𝑖 𝑥 𝑗 ) · ( 𝑗 𝑦 𝑘 ) ) ) ) ) = ( 𝑖 ∈ 𝑀 , 𝑘 ∈ 𝑃 ↦ ( 𝑅 Σg ( 𝑗 ∈ 𝑁 ↦ ( ( 𝑖 𝑋 𝑗 ) · ( 𝑗 𝑌 𝑘 ) ) ) ) ) ) |
| 18 | mpoexga | ⊢ ( ( 𝑀 ∈ Fin ∧ 𝑃 ∈ Fin ) → ( 𝑖 ∈ 𝑀 , 𝑘 ∈ 𝑃 ↦ ( 𝑅 Σg ( 𝑗 ∈ 𝑁 ↦ ( ( 𝑖 𝑋 𝑗 ) · ( 𝑗 𝑌 𝑘 ) ) ) ) ) ∈ V ) | |
| 19 | 5 7 18 | syl2anc | ⊢ ( 𝜑 → ( 𝑖 ∈ 𝑀 , 𝑘 ∈ 𝑃 ↦ ( 𝑅 Σg ( 𝑗 ∈ 𝑁 ↦ ( ( 𝑖 𝑋 𝑗 ) · ( 𝑗 𝑌 𝑘 ) ) ) ) ) ∈ V ) |
| 20 | 10 17 8 9 19 | ovmpod | ⊢ ( 𝜑 → ( 𝑋 𝐹 𝑌 ) = ( 𝑖 ∈ 𝑀 , 𝑘 ∈ 𝑃 ↦ ( 𝑅 Σg ( 𝑗 ∈ 𝑁 ↦ ( ( 𝑖 𝑋 𝑗 ) · ( 𝑗 𝑌 𝑘 ) ) ) ) ) ) |