This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Multiplying two transposed matrices results in the transposition of the product of the two matrices. (Contributed by Stefan O'Rear, 17-Jul-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mattposm.a | ⊢ 𝐴 = ( 𝑁 Mat 𝑅 ) | |
| mattposm.b | ⊢ 𝐵 = ( Base ‘ 𝐴 ) | ||
| mattposm.t | ⊢ · = ( .r ‘ 𝐴 ) | ||
| Assertion | mattposm | ⊢ ( ( 𝑅 ∈ CRing ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → tpos ( 𝑋 · 𝑌 ) = ( tpos 𝑌 · tpos 𝑋 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mattposm.a | ⊢ 𝐴 = ( 𝑁 Mat 𝑅 ) | |
| 2 | mattposm.b | ⊢ 𝐵 = ( Base ‘ 𝐴 ) | |
| 3 | mattposm.t | ⊢ · = ( .r ‘ 𝐴 ) | |
| 4 | eqid | ⊢ ( 𝑅 maMul 〈 𝑁 , 𝑁 , 𝑁 〉 ) = ( 𝑅 maMul 〈 𝑁 , 𝑁 , 𝑁 〉 ) | |
| 5 | eqid | ⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) | |
| 6 | simp1 | ⊢ ( ( 𝑅 ∈ CRing ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → 𝑅 ∈ CRing ) | |
| 7 | 1 2 | matrcl | ⊢ ( 𝑌 ∈ 𝐵 → ( 𝑁 ∈ Fin ∧ 𝑅 ∈ V ) ) |
| 8 | 7 | simpld | ⊢ ( 𝑌 ∈ 𝐵 → 𝑁 ∈ Fin ) |
| 9 | 8 | 3ad2ant3 | ⊢ ( ( 𝑅 ∈ CRing ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → 𝑁 ∈ Fin ) |
| 10 | 1 5 2 | matbas2i | ⊢ ( 𝑋 ∈ 𝐵 → 𝑋 ∈ ( ( Base ‘ 𝑅 ) ↑m ( 𝑁 × 𝑁 ) ) ) |
| 11 | 10 | 3ad2ant2 | ⊢ ( ( 𝑅 ∈ CRing ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → 𝑋 ∈ ( ( Base ‘ 𝑅 ) ↑m ( 𝑁 × 𝑁 ) ) ) |
| 12 | 1 5 2 | matbas2i | ⊢ ( 𝑌 ∈ 𝐵 → 𝑌 ∈ ( ( Base ‘ 𝑅 ) ↑m ( 𝑁 × 𝑁 ) ) ) |
| 13 | 12 | 3ad2ant3 | ⊢ ( ( 𝑅 ∈ CRing ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → 𝑌 ∈ ( ( Base ‘ 𝑅 ) ↑m ( 𝑁 × 𝑁 ) ) ) |
| 14 | 4 4 5 6 9 9 9 11 13 | mamutpos | ⊢ ( ( 𝑅 ∈ CRing ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → tpos ( 𝑋 ( 𝑅 maMul 〈 𝑁 , 𝑁 , 𝑁 〉 ) 𝑌 ) = ( tpos 𝑌 ( 𝑅 maMul 〈 𝑁 , 𝑁 , 𝑁 〉 ) tpos 𝑋 ) ) |
| 15 | 1 4 | matmulr | ⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) → ( 𝑅 maMul 〈 𝑁 , 𝑁 , 𝑁 〉 ) = ( .r ‘ 𝐴 ) ) |
| 16 | 9 6 15 | syl2anc | ⊢ ( ( 𝑅 ∈ CRing ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑅 maMul 〈 𝑁 , 𝑁 , 𝑁 〉 ) = ( .r ‘ 𝐴 ) ) |
| 17 | 3 16 | eqtr4id | ⊢ ( ( 𝑅 ∈ CRing ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → · = ( 𝑅 maMul 〈 𝑁 , 𝑁 , 𝑁 〉 ) ) |
| 18 | 17 | oveqd | ⊢ ( ( 𝑅 ∈ CRing ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 · 𝑌 ) = ( 𝑋 ( 𝑅 maMul 〈 𝑁 , 𝑁 , 𝑁 〉 ) 𝑌 ) ) |
| 19 | 18 | tposeqd | ⊢ ( ( 𝑅 ∈ CRing ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → tpos ( 𝑋 · 𝑌 ) = tpos ( 𝑋 ( 𝑅 maMul 〈 𝑁 , 𝑁 , 𝑁 〉 ) 𝑌 ) ) |
| 20 | 17 | oveqd | ⊢ ( ( 𝑅 ∈ CRing ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( tpos 𝑌 · tpos 𝑋 ) = ( tpos 𝑌 ( 𝑅 maMul 〈 𝑁 , 𝑁 , 𝑁 〉 ) tpos 𝑋 ) ) |
| 21 | 14 19 20 | 3eqtr4d | ⊢ ( ( 𝑅 ∈ CRing ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → tpos ( 𝑋 · 𝑌 ) = ( tpos 𝑌 · tpos 𝑋 ) ) |