This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The transposition of an I X J -matrix is a J X I -matrix, see also the statement in Lang p. 505. (Contributed by Stefan O'Rear, 9-Jul-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | tposmap | ⊢ ( 𝐴 ∈ ( 𝐵 ↑m ( 𝐼 × 𝐽 ) ) → tpos 𝐴 ∈ ( 𝐵 ↑m ( 𝐽 × 𝐼 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elmapi | ⊢ ( 𝐴 ∈ ( 𝐵 ↑m ( 𝐼 × 𝐽 ) ) → 𝐴 : ( 𝐼 × 𝐽 ) ⟶ 𝐵 ) | |
| 2 | tposf | ⊢ ( 𝐴 : ( 𝐼 × 𝐽 ) ⟶ 𝐵 → tpos 𝐴 : ( 𝐽 × 𝐼 ) ⟶ 𝐵 ) | |
| 3 | 1 2 | syl | ⊢ ( 𝐴 ∈ ( 𝐵 ↑m ( 𝐼 × 𝐽 ) ) → tpos 𝐴 : ( 𝐽 × 𝐼 ) ⟶ 𝐵 ) |
| 4 | elmapex | ⊢ ( 𝐴 ∈ ( 𝐵 ↑m ( 𝐼 × 𝐽 ) ) → ( 𝐵 ∈ V ∧ ( 𝐼 × 𝐽 ) ∈ V ) ) | |
| 5 | cnvxp | ⊢ ◡ ( 𝐼 × 𝐽 ) = ( 𝐽 × 𝐼 ) | |
| 6 | cnvexg | ⊢ ( ( 𝐼 × 𝐽 ) ∈ V → ◡ ( 𝐼 × 𝐽 ) ∈ V ) | |
| 7 | 5 6 | eqeltrrid | ⊢ ( ( 𝐼 × 𝐽 ) ∈ V → ( 𝐽 × 𝐼 ) ∈ V ) |
| 8 | 7 | anim2i | ⊢ ( ( 𝐵 ∈ V ∧ ( 𝐼 × 𝐽 ) ∈ V ) → ( 𝐵 ∈ V ∧ ( 𝐽 × 𝐼 ) ∈ V ) ) |
| 9 | elmapg | ⊢ ( ( 𝐵 ∈ V ∧ ( 𝐽 × 𝐼 ) ∈ V ) → ( tpos 𝐴 ∈ ( 𝐵 ↑m ( 𝐽 × 𝐼 ) ) ↔ tpos 𝐴 : ( 𝐽 × 𝐼 ) ⟶ 𝐵 ) ) | |
| 10 | 4 8 9 | 3syl | ⊢ ( 𝐴 ∈ ( 𝐵 ↑m ( 𝐼 × 𝐽 ) ) → ( tpos 𝐴 ∈ ( 𝐵 ↑m ( 𝐽 × 𝐼 ) ) ↔ tpos 𝐴 : ( 𝐽 × 𝐼 ) ⟶ 𝐵 ) ) |
| 11 | 3 10 | mpbird | ⊢ ( 𝐴 ∈ ( 𝐵 ↑m ( 𝐼 × 𝐽 ) ) → tpos 𝐴 ∈ ( 𝐵 ↑m ( 𝐽 × 𝐼 ) ) ) |