This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Property of the multiplicative inverse in a division ring. ( recid analog). (Contributed by NM, 19-Apr-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | drnginvrl.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| drnginvrl.z | ⊢ 0 = ( 0g ‘ 𝑅 ) | ||
| drnginvrl.t | ⊢ · = ( .r ‘ 𝑅 ) | ||
| drnginvrl.u | ⊢ 1 = ( 1r ‘ 𝑅 ) | ||
| drnginvrl.i | ⊢ 𝐼 = ( invr ‘ 𝑅 ) | ||
| Assertion | drnginvrr | ⊢ ( ( 𝑅 ∈ DivRing ∧ 𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ) → ( 𝑋 · ( 𝐼 ‘ 𝑋 ) ) = 1 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | drnginvrl.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| 2 | drnginvrl.z | ⊢ 0 = ( 0g ‘ 𝑅 ) | |
| 3 | drnginvrl.t | ⊢ · = ( .r ‘ 𝑅 ) | |
| 4 | drnginvrl.u | ⊢ 1 = ( 1r ‘ 𝑅 ) | |
| 5 | drnginvrl.i | ⊢ 𝐼 = ( invr ‘ 𝑅 ) | |
| 6 | eqid | ⊢ ( Unit ‘ 𝑅 ) = ( Unit ‘ 𝑅 ) | |
| 7 | 1 6 2 | drngunit | ⊢ ( 𝑅 ∈ DivRing → ( 𝑋 ∈ ( Unit ‘ 𝑅 ) ↔ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ) ) ) |
| 8 | drngring | ⊢ ( 𝑅 ∈ DivRing → 𝑅 ∈ Ring ) | |
| 9 | 6 5 3 4 | unitrinv | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ ( Unit ‘ 𝑅 ) ) → ( 𝑋 · ( 𝐼 ‘ 𝑋 ) ) = 1 ) |
| 10 | 9 | ex | ⊢ ( 𝑅 ∈ Ring → ( 𝑋 ∈ ( Unit ‘ 𝑅 ) → ( 𝑋 · ( 𝐼 ‘ 𝑋 ) ) = 1 ) ) |
| 11 | 8 10 | syl | ⊢ ( 𝑅 ∈ DivRing → ( 𝑋 ∈ ( Unit ‘ 𝑅 ) → ( 𝑋 · ( 𝐼 ‘ 𝑋 ) ) = 1 ) ) |
| 12 | 7 11 | sylbird | ⊢ ( 𝑅 ∈ DivRing → ( ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ) → ( 𝑋 · ( 𝐼 ‘ 𝑋 ) ) = 1 ) ) |
| 13 | 12 | 3impib | ⊢ ( ( 𝑅 ∈ DivRing ∧ 𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ) → ( 𝑋 · ( 𝐼 ‘ 𝑋 ) ) = 1 ) |