This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Sums of independent vectors must have equal coefficients. (Contributed by NM, 22-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lvecindp2.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| lvecindp2.p | ⊢ + = ( +g ‘ 𝑊 ) | ||
| lvecindp2.f | ⊢ 𝐹 = ( Scalar ‘ 𝑊 ) | ||
| lvecindp2.k | ⊢ 𝐾 = ( Base ‘ 𝐹 ) | ||
| lvecindp2.t | ⊢ · = ( ·𝑠 ‘ 𝑊 ) | ||
| lvecindp2.o | ⊢ 0 = ( 0g ‘ 𝑊 ) | ||
| lvecindp2.n | ⊢ 𝑁 = ( LSpan ‘ 𝑊 ) | ||
| lvecindp2.w | ⊢ ( 𝜑 → 𝑊 ∈ LVec ) | ||
| lvecindp2.x | ⊢ ( 𝜑 → 𝑋 ∈ ( 𝑉 ∖ { 0 } ) ) | ||
| lvecindp2.y | ⊢ ( 𝜑 → 𝑌 ∈ ( 𝑉 ∖ { 0 } ) ) | ||
| lvecindp2.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝐾 ) | ||
| lvecindp2.b | ⊢ ( 𝜑 → 𝐵 ∈ 𝐾 ) | ||
| lvecindp2.c | ⊢ ( 𝜑 → 𝐶 ∈ 𝐾 ) | ||
| lvecindp2.d | ⊢ ( 𝜑 → 𝐷 ∈ 𝐾 ) | ||
| lvecindp2.q | ⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑋 } ) ≠ ( 𝑁 ‘ { 𝑌 } ) ) | ||
| lvecindp2.e | ⊢ ( 𝜑 → ( ( 𝐴 · 𝑋 ) + ( 𝐵 · 𝑌 ) ) = ( ( 𝐶 · 𝑋 ) + ( 𝐷 · 𝑌 ) ) ) | ||
| Assertion | lvecindp2 | ⊢ ( 𝜑 → ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lvecindp2.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| 2 | lvecindp2.p | ⊢ + = ( +g ‘ 𝑊 ) | |
| 3 | lvecindp2.f | ⊢ 𝐹 = ( Scalar ‘ 𝑊 ) | |
| 4 | lvecindp2.k | ⊢ 𝐾 = ( Base ‘ 𝐹 ) | |
| 5 | lvecindp2.t | ⊢ · = ( ·𝑠 ‘ 𝑊 ) | |
| 6 | lvecindp2.o | ⊢ 0 = ( 0g ‘ 𝑊 ) | |
| 7 | lvecindp2.n | ⊢ 𝑁 = ( LSpan ‘ 𝑊 ) | |
| 8 | lvecindp2.w | ⊢ ( 𝜑 → 𝑊 ∈ LVec ) | |
| 9 | lvecindp2.x | ⊢ ( 𝜑 → 𝑋 ∈ ( 𝑉 ∖ { 0 } ) ) | |
| 10 | lvecindp2.y | ⊢ ( 𝜑 → 𝑌 ∈ ( 𝑉 ∖ { 0 } ) ) | |
| 11 | lvecindp2.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝐾 ) | |
| 12 | lvecindp2.b | ⊢ ( 𝜑 → 𝐵 ∈ 𝐾 ) | |
| 13 | lvecindp2.c | ⊢ ( 𝜑 → 𝐶 ∈ 𝐾 ) | |
| 14 | lvecindp2.d | ⊢ ( 𝜑 → 𝐷 ∈ 𝐾 ) | |
| 15 | lvecindp2.q | ⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑋 } ) ≠ ( 𝑁 ‘ { 𝑌 } ) ) | |
| 16 | lvecindp2.e | ⊢ ( 𝜑 → ( ( 𝐴 · 𝑋 ) + ( 𝐵 · 𝑌 ) ) = ( ( 𝐶 · 𝑋 ) + ( 𝐷 · 𝑌 ) ) ) | |
| 17 | eqid | ⊢ ( Cntz ‘ 𝑊 ) = ( Cntz ‘ 𝑊 ) | |
| 18 | lveclmod | ⊢ ( 𝑊 ∈ LVec → 𝑊 ∈ LMod ) | |
| 19 | 8 18 | syl | ⊢ ( 𝜑 → 𝑊 ∈ LMod ) |
| 20 | 9 | eldifad | ⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) |
| 21 | 1 7 | lspsnsubg | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ) → ( 𝑁 ‘ { 𝑋 } ) ∈ ( SubGrp ‘ 𝑊 ) ) |
| 22 | 19 20 21 | syl2anc | ⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑋 } ) ∈ ( SubGrp ‘ 𝑊 ) ) |
| 23 | 10 | eldifad | ⊢ ( 𝜑 → 𝑌 ∈ 𝑉 ) |
| 24 | 1 7 | lspsnsubg | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑌 ∈ 𝑉 ) → ( 𝑁 ‘ { 𝑌 } ) ∈ ( SubGrp ‘ 𝑊 ) ) |
| 25 | 19 23 24 | syl2anc | ⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑌 } ) ∈ ( SubGrp ‘ 𝑊 ) ) |
| 26 | 1 6 7 8 20 23 15 | lspdisj2 | ⊢ ( 𝜑 → ( ( 𝑁 ‘ { 𝑋 } ) ∩ ( 𝑁 ‘ { 𝑌 } ) ) = { 0 } ) |
| 27 | lmodabl | ⊢ ( 𝑊 ∈ LMod → 𝑊 ∈ Abel ) | |
| 28 | 19 27 | syl | ⊢ ( 𝜑 → 𝑊 ∈ Abel ) |
| 29 | 17 28 22 25 | ablcntzd | ⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑋 } ) ⊆ ( ( Cntz ‘ 𝑊 ) ‘ ( 𝑁 ‘ { 𝑌 } ) ) ) |
| 30 | 1 5 3 4 7 19 11 20 | ellspsni | ⊢ ( 𝜑 → ( 𝐴 · 𝑋 ) ∈ ( 𝑁 ‘ { 𝑋 } ) ) |
| 31 | 1 5 3 4 7 19 13 20 | ellspsni | ⊢ ( 𝜑 → ( 𝐶 · 𝑋 ) ∈ ( 𝑁 ‘ { 𝑋 } ) ) |
| 32 | 1 5 3 4 7 19 12 23 | ellspsni | ⊢ ( 𝜑 → ( 𝐵 · 𝑌 ) ∈ ( 𝑁 ‘ { 𝑌 } ) ) |
| 33 | 1 5 3 4 7 19 14 23 | ellspsni | ⊢ ( 𝜑 → ( 𝐷 · 𝑌 ) ∈ ( 𝑁 ‘ { 𝑌 } ) ) |
| 34 | 2 6 17 22 25 26 29 30 31 32 33 | subgdisjb | ⊢ ( 𝜑 → ( ( ( 𝐴 · 𝑋 ) + ( 𝐵 · 𝑌 ) ) = ( ( 𝐶 · 𝑋 ) + ( 𝐷 · 𝑌 ) ) ↔ ( ( 𝐴 · 𝑋 ) = ( 𝐶 · 𝑋 ) ∧ ( 𝐵 · 𝑌 ) = ( 𝐷 · 𝑌 ) ) ) ) |
| 35 | 16 34 | mpbid | ⊢ ( 𝜑 → ( ( 𝐴 · 𝑋 ) = ( 𝐶 · 𝑋 ) ∧ ( 𝐵 · 𝑌 ) = ( 𝐷 · 𝑌 ) ) ) |
| 36 | eldifsni | ⊢ ( 𝑋 ∈ ( 𝑉 ∖ { 0 } ) → 𝑋 ≠ 0 ) | |
| 37 | 9 36 | syl | ⊢ ( 𝜑 → 𝑋 ≠ 0 ) |
| 38 | 1 5 3 4 6 8 11 13 20 37 | lvecvscan2 | ⊢ ( 𝜑 → ( ( 𝐴 · 𝑋 ) = ( 𝐶 · 𝑋 ) ↔ 𝐴 = 𝐶 ) ) |
| 39 | eldifsni | ⊢ ( 𝑌 ∈ ( 𝑉 ∖ { 0 } ) → 𝑌 ≠ 0 ) | |
| 40 | 10 39 | syl | ⊢ ( 𝜑 → 𝑌 ≠ 0 ) |
| 41 | 1 5 3 4 6 8 12 14 23 40 | lvecvscan2 | ⊢ ( 𝜑 → ( ( 𝐵 · 𝑌 ) = ( 𝐷 · 𝑌 ) ↔ 𝐵 = 𝐷 ) ) |
| 42 | 38 41 | anbi12d | ⊢ ( 𝜑 → ( ( ( 𝐴 · 𝑋 ) = ( 𝐶 · 𝑋 ) ∧ ( 𝐵 · 𝑌 ) = ( 𝐷 · 𝑌 ) ) ↔ ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) ) ) |
| 43 | 35 42 | mpbid | ⊢ ( 𝜑 → ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) ) |