This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Unequal singleton spans imply nonzero vector subtraction. (Contributed by NM, 19-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lspsnsubn0.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| lspsnsubn0.o | ⊢ 0 = ( 0g ‘ 𝑊 ) | ||
| lspsnsubn0.m | ⊢ − = ( -g ‘ 𝑊 ) | ||
| lspsnsubn0.w | ⊢ ( 𝜑 → 𝑊 ∈ LMod ) | ||
| lspsnsubn0.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) | ||
| lspsnsubn0.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝑉 ) | ||
| lspsnsubn0.e | ⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑋 } ) ≠ ( 𝑁 ‘ { 𝑌 } ) ) | ||
| Assertion | lspsnsubn0 | ⊢ ( 𝜑 → ( 𝑋 − 𝑌 ) ≠ 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lspsnsubn0.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| 2 | lspsnsubn0.o | ⊢ 0 = ( 0g ‘ 𝑊 ) | |
| 3 | lspsnsubn0.m | ⊢ − = ( -g ‘ 𝑊 ) | |
| 4 | lspsnsubn0.w | ⊢ ( 𝜑 → 𝑊 ∈ LMod ) | |
| 5 | lspsnsubn0.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) | |
| 6 | lspsnsubn0.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝑉 ) | |
| 7 | lspsnsubn0.e | ⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑋 } ) ≠ ( 𝑁 ‘ { 𝑌 } ) ) | |
| 8 | 1 2 3 | lmodsubeq0 | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) → ( ( 𝑋 − 𝑌 ) = 0 ↔ 𝑋 = 𝑌 ) ) |
| 9 | 4 5 6 8 | syl3anc | ⊢ ( 𝜑 → ( ( 𝑋 − 𝑌 ) = 0 ↔ 𝑋 = 𝑌 ) ) |
| 10 | sneq | ⊢ ( 𝑋 = 𝑌 → { 𝑋 } = { 𝑌 } ) | |
| 11 | 10 | fveq2d | ⊢ ( 𝑋 = 𝑌 → ( 𝑁 ‘ { 𝑋 } ) = ( 𝑁 ‘ { 𝑌 } ) ) |
| 12 | 9 11 | biimtrdi | ⊢ ( 𝜑 → ( ( 𝑋 − 𝑌 ) = 0 → ( 𝑁 ‘ { 𝑋 } ) = ( 𝑁 ‘ { 𝑌 } ) ) ) |
| 13 | 12 | necon3d | ⊢ ( 𝜑 → ( ( 𝑁 ‘ { 𝑋 } ) ≠ ( 𝑁 ‘ { 𝑌 } ) → ( 𝑋 − 𝑌 ) ≠ 0 ) ) |
| 14 | 7 13 | mpd | ⊢ ( 𝜑 → ( 𝑋 − 𝑌 ) ≠ 0 ) |