This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Unequal spans are disjoint (share only the zero vector). (Contributed by NM, 22-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lspdisj2.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| lspdisj2.o | ⊢ 0 = ( 0g ‘ 𝑊 ) | ||
| lspdisj2.n | ⊢ 𝑁 = ( LSpan ‘ 𝑊 ) | ||
| lspdisj2.w | ⊢ ( 𝜑 → 𝑊 ∈ LVec ) | ||
| lspdisj2.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) | ||
| lspdisj2.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝑉 ) | ||
| lspdisj2.q | ⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑋 } ) ≠ ( 𝑁 ‘ { 𝑌 } ) ) | ||
| Assertion | lspdisj2 | ⊢ ( 𝜑 → ( ( 𝑁 ‘ { 𝑋 } ) ∩ ( 𝑁 ‘ { 𝑌 } ) ) = { 0 } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lspdisj2.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| 2 | lspdisj2.o | ⊢ 0 = ( 0g ‘ 𝑊 ) | |
| 3 | lspdisj2.n | ⊢ 𝑁 = ( LSpan ‘ 𝑊 ) | |
| 4 | lspdisj2.w | ⊢ ( 𝜑 → 𝑊 ∈ LVec ) | |
| 5 | lspdisj2.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) | |
| 6 | lspdisj2.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝑉 ) | |
| 7 | lspdisj2.q | ⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑋 } ) ≠ ( 𝑁 ‘ { 𝑌 } ) ) | |
| 8 | sneq | ⊢ ( 𝑋 = 0 → { 𝑋 } = { 0 } ) | |
| 9 | 8 | fveq2d | ⊢ ( 𝑋 = 0 → ( 𝑁 ‘ { 𝑋 } ) = ( 𝑁 ‘ { 0 } ) ) |
| 10 | lveclmod | ⊢ ( 𝑊 ∈ LVec → 𝑊 ∈ LMod ) | |
| 11 | 4 10 | syl | ⊢ ( 𝜑 → 𝑊 ∈ LMod ) |
| 12 | 2 3 | lspsn0 | ⊢ ( 𝑊 ∈ LMod → ( 𝑁 ‘ { 0 } ) = { 0 } ) |
| 13 | 11 12 | syl | ⊢ ( 𝜑 → ( 𝑁 ‘ { 0 } ) = { 0 } ) |
| 14 | 9 13 | sylan9eqr | ⊢ ( ( 𝜑 ∧ 𝑋 = 0 ) → ( 𝑁 ‘ { 𝑋 } ) = { 0 } ) |
| 15 | 14 | ineq1d | ⊢ ( ( 𝜑 ∧ 𝑋 = 0 ) → ( ( 𝑁 ‘ { 𝑋 } ) ∩ ( 𝑁 ‘ { 𝑌 } ) ) = ( { 0 } ∩ ( 𝑁 ‘ { 𝑌 } ) ) ) |
| 16 | eqid | ⊢ ( LSubSp ‘ 𝑊 ) = ( LSubSp ‘ 𝑊 ) | |
| 17 | 1 16 3 | lspsncl | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑌 ∈ 𝑉 ) → ( 𝑁 ‘ { 𝑌 } ) ∈ ( LSubSp ‘ 𝑊 ) ) |
| 18 | 11 6 17 | syl2anc | ⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑌 } ) ∈ ( LSubSp ‘ 𝑊 ) ) |
| 19 | 2 16 | lss0ss | ⊢ ( ( 𝑊 ∈ LMod ∧ ( 𝑁 ‘ { 𝑌 } ) ∈ ( LSubSp ‘ 𝑊 ) ) → { 0 } ⊆ ( 𝑁 ‘ { 𝑌 } ) ) |
| 20 | 11 18 19 | syl2anc | ⊢ ( 𝜑 → { 0 } ⊆ ( 𝑁 ‘ { 𝑌 } ) ) |
| 21 | dfss2 | ⊢ ( { 0 } ⊆ ( 𝑁 ‘ { 𝑌 } ) ↔ ( { 0 } ∩ ( 𝑁 ‘ { 𝑌 } ) ) = { 0 } ) | |
| 22 | 20 21 | sylib | ⊢ ( 𝜑 → ( { 0 } ∩ ( 𝑁 ‘ { 𝑌 } ) ) = { 0 } ) |
| 23 | 22 | adantr | ⊢ ( ( 𝜑 ∧ 𝑋 = 0 ) → ( { 0 } ∩ ( 𝑁 ‘ { 𝑌 } ) ) = { 0 } ) |
| 24 | 15 23 | eqtrd | ⊢ ( ( 𝜑 ∧ 𝑋 = 0 ) → ( ( 𝑁 ‘ { 𝑋 } ) ∩ ( 𝑁 ‘ { 𝑌 } ) ) = { 0 } ) |
| 25 | 4 | adantr | ⊢ ( ( 𝜑 ∧ 𝑋 ≠ 0 ) → 𝑊 ∈ LVec ) |
| 26 | 18 | adantr | ⊢ ( ( 𝜑 ∧ 𝑋 ≠ 0 ) → ( 𝑁 ‘ { 𝑌 } ) ∈ ( LSubSp ‘ 𝑊 ) ) |
| 27 | 5 | adantr | ⊢ ( ( 𝜑 ∧ 𝑋 ≠ 0 ) → 𝑋 ∈ 𝑉 ) |
| 28 | 7 | adantr | ⊢ ( ( 𝜑 ∧ 𝑋 ≠ 0 ) → ( 𝑁 ‘ { 𝑋 } ) ≠ ( 𝑁 ‘ { 𝑌 } ) ) |
| 29 | 25 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝑋 ≠ 0 ) ∧ 𝑋 ∈ ( 𝑁 ‘ { 𝑌 } ) ) → 𝑊 ∈ LVec ) |
| 30 | 6 | adantr | ⊢ ( ( 𝜑 ∧ 𝑋 ≠ 0 ) → 𝑌 ∈ 𝑉 ) |
| 31 | 30 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝑋 ≠ 0 ) ∧ 𝑋 ∈ ( 𝑁 ‘ { 𝑌 } ) ) → 𝑌 ∈ 𝑉 ) |
| 32 | simpr | ⊢ ( ( ( 𝜑 ∧ 𝑋 ≠ 0 ) ∧ 𝑋 ∈ ( 𝑁 ‘ { 𝑌 } ) ) → 𝑋 ∈ ( 𝑁 ‘ { 𝑌 } ) ) | |
| 33 | simplr | ⊢ ( ( ( 𝜑 ∧ 𝑋 ≠ 0 ) ∧ 𝑋 ∈ ( 𝑁 ‘ { 𝑌 } ) ) → 𝑋 ≠ 0 ) | |
| 34 | 1 2 3 29 31 32 33 | lspsneleq | ⊢ ( ( ( 𝜑 ∧ 𝑋 ≠ 0 ) ∧ 𝑋 ∈ ( 𝑁 ‘ { 𝑌 } ) ) → ( 𝑁 ‘ { 𝑋 } ) = ( 𝑁 ‘ { 𝑌 } ) ) |
| 35 | 34 | ex | ⊢ ( ( 𝜑 ∧ 𝑋 ≠ 0 ) → ( 𝑋 ∈ ( 𝑁 ‘ { 𝑌 } ) → ( 𝑁 ‘ { 𝑋 } ) = ( 𝑁 ‘ { 𝑌 } ) ) ) |
| 36 | 35 | necon3ad | ⊢ ( ( 𝜑 ∧ 𝑋 ≠ 0 ) → ( ( 𝑁 ‘ { 𝑋 } ) ≠ ( 𝑁 ‘ { 𝑌 } ) → ¬ 𝑋 ∈ ( 𝑁 ‘ { 𝑌 } ) ) ) |
| 37 | 28 36 | mpd | ⊢ ( ( 𝜑 ∧ 𝑋 ≠ 0 ) → ¬ 𝑋 ∈ ( 𝑁 ‘ { 𝑌 } ) ) |
| 38 | 1 2 3 16 25 26 27 37 | lspdisj | ⊢ ( ( 𝜑 ∧ 𝑋 ≠ 0 ) → ( ( 𝑁 ‘ { 𝑋 } ) ∩ ( 𝑁 ‘ { 𝑌 } ) ) = { 0 } ) |
| 39 | 24 38 | pm2.61dane | ⊢ ( 𝜑 → ( ( 𝑁 ‘ { 𝑋 } ) ∩ ( 𝑁 ‘ { 𝑌 } ) ) = { 0 } ) |