This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Sums of independent vectors must have equal coefficients. (Contributed by NM, 22-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lvecindp2.v | |- V = ( Base ` W ) |
|
| lvecindp2.p | |- .+ = ( +g ` W ) |
||
| lvecindp2.f | |- F = ( Scalar ` W ) |
||
| lvecindp2.k | |- K = ( Base ` F ) |
||
| lvecindp2.t | |- .x. = ( .s ` W ) |
||
| lvecindp2.o | |- .0. = ( 0g ` W ) |
||
| lvecindp2.n | |- N = ( LSpan ` W ) |
||
| lvecindp2.w | |- ( ph -> W e. LVec ) |
||
| lvecindp2.x | |- ( ph -> X e. ( V \ { .0. } ) ) |
||
| lvecindp2.y | |- ( ph -> Y e. ( V \ { .0. } ) ) |
||
| lvecindp2.a | |- ( ph -> A e. K ) |
||
| lvecindp2.b | |- ( ph -> B e. K ) |
||
| lvecindp2.c | |- ( ph -> C e. K ) |
||
| lvecindp2.d | |- ( ph -> D e. K ) |
||
| lvecindp2.q | |- ( ph -> ( N ` { X } ) =/= ( N ` { Y } ) ) |
||
| lvecindp2.e | |- ( ph -> ( ( A .x. X ) .+ ( B .x. Y ) ) = ( ( C .x. X ) .+ ( D .x. Y ) ) ) |
||
| Assertion | lvecindp2 | |- ( ph -> ( A = C /\ B = D ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lvecindp2.v | |- V = ( Base ` W ) |
|
| 2 | lvecindp2.p | |- .+ = ( +g ` W ) |
|
| 3 | lvecindp2.f | |- F = ( Scalar ` W ) |
|
| 4 | lvecindp2.k | |- K = ( Base ` F ) |
|
| 5 | lvecindp2.t | |- .x. = ( .s ` W ) |
|
| 6 | lvecindp2.o | |- .0. = ( 0g ` W ) |
|
| 7 | lvecindp2.n | |- N = ( LSpan ` W ) |
|
| 8 | lvecindp2.w | |- ( ph -> W e. LVec ) |
|
| 9 | lvecindp2.x | |- ( ph -> X e. ( V \ { .0. } ) ) |
|
| 10 | lvecindp2.y | |- ( ph -> Y e. ( V \ { .0. } ) ) |
|
| 11 | lvecindp2.a | |- ( ph -> A e. K ) |
|
| 12 | lvecindp2.b | |- ( ph -> B e. K ) |
|
| 13 | lvecindp2.c | |- ( ph -> C e. K ) |
|
| 14 | lvecindp2.d | |- ( ph -> D e. K ) |
|
| 15 | lvecindp2.q | |- ( ph -> ( N ` { X } ) =/= ( N ` { Y } ) ) |
|
| 16 | lvecindp2.e | |- ( ph -> ( ( A .x. X ) .+ ( B .x. Y ) ) = ( ( C .x. X ) .+ ( D .x. Y ) ) ) |
|
| 17 | eqid | |- ( Cntz ` W ) = ( Cntz ` W ) |
|
| 18 | lveclmod | |- ( W e. LVec -> W e. LMod ) |
|
| 19 | 8 18 | syl | |- ( ph -> W e. LMod ) |
| 20 | 9 | eldifad | |- ( ph -> X e. V ) |
| 21 | 1 7 | lspsnsubg | |- ( ( W e. LMod /\ X e. V ) -> ( N ` { X } ) e. ( SubGrp ` W ) ) |
| 22 | 19 20 21 | syl2anc | |- ( ph -> ( N ` { X } ) e. ( SubGrp ` W ) ) |
| 23 | 10 | eldifad | |- ( ph -> Y e. V ) |
| 24 | 1 7 | lspsnsubg | |- ( ( W e. LMod /\ Y e. V ) -> ( N ` { Y } ) e. ( SubGrp ` W ) ) |
| 25 | 19 23 24 | syl2anc | |- ( ph -> ( N ` { Y } ) e. ( SubGrp ` W ) ) |
| 26 | 1 6 7 8 20 23 15 | lspdisj2 | |- ( ph -> ( ( N ` { X } ) i^i ( N ` { Y } ) ) = { .0. } ) |
| 27 | lmodabl | |- ( W e. LMod -> W e. Abel ) |
|
| 28 | 19 27 | syl | |- ( ph -> W e. Abel ) |
| 29 | 17 28 22 25 | ablcntzd | |- ( ph -> ( N ` { X } ) C_ ( ( Cntz ` W ) ` ( N ` { Y } ) ) ) |
| 30 | 1 5 3 4 7 19 11 20 | ellspsni | |- ( ph -> ( A .x. X ) e. ( N ` { X } ) ) |
| 31 | 1 5 3 4 7 19 13 20 | ellspsni | |- ( ph -> ( C .x. X ) e. ( N ` { X } ) ) |
| 32 | 1 5 3 4 7 19 12 23 | ellspsni | |- ( ph -> ( B .x. Y ) e. ( N ` { Y } ) ) |
| 33 | 1 5 3 4 7 19 14 23 | ellspsni | |- ( ph -> ( D .x. Y ) e. ( N ` { Y } ) ) |
| 34 | 2 6 17 22 25 26 29 30 31 32 33 | subgdisjb | |- ( ph -> ( ( ( A .x. X ) .+ ( B .x. Y ) ) = ( ( C .x. X ) .+ ( D .x. Y ) ) <-> ( ( A .x. X ) = ( C .x. X ) /\ ( B .x. Y ) = ( D .x. Y ) ) ) ) |
| 35 | 16 34 | mpbid | |- ( ph -> ( ( A .x. X ) = ( C .x. X ) /\ ( B .x. Y ) = ( D .x. Y ) ) ) |
| 36 | eldifsni | |- ( X e. ( V \ { .0. } ) -> X =/= .0. ) |
|
| 37 | 9 36 | syl | |- ( ph -> X =/= .0. ) |
| 38 | 1 5 3 4 6 8 11 13 20 37 | lvecvscan2 | |- ( ph -> ( ( A .x. X ) = ( C .x. X ) <-> A = C ) ) |
| 39 | eldifsni | |- ( Y e. ( V \ { .0. } ) -> Y =/= .0. ) |
|
| 40 | 10 39 | syl | |- ( ph -> Y =/= .0. ) |
| 41 | 1 5 3 4 6 8 12 14 23 40 | lvecvscan2 | |- ( ph -> ( ( B .x. Y ) = ( D .x. Y ) <-> B = D ) ) |
| 42 | 38 41 | anbi12d | |- ( ph -> ( ( ( A .x. X ) = ( C .x. X ) /\ ( B .x. Y ) = ( D .x. Y ) ) <-> ( A = C /\ B = D ) ) ) |
| 43 | 35 42 | mpbid | |- ( ph -> ( A = C /\ B = D ) ) |