This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Compute the X coefficient in a sum with an independent vector X (first conjunct), which can then be removed to continue with the remaining vectors summed in expressions Y and Z (second conjunct). Typically, U is the span of the remaining vectors. (Contributed by NM, 5-Apr-2015) (Revised by Mario Carneiro, 21-Apr-2016) (Proof shortened by AV, 19-Jul-2022)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lvecindp.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| lvecindp.p | ⊢ + = ( +g ‘ 𝑊 ) | ||
| lvecindp.f | ⊢ 𝐹 = ( Scalar ‘ 𝑊 ) | ||
| lvecindp.k | ⊢ 𝐾 = ( Base ‘ 𝐹 ) | ||
| lvecindp.t | ⊢ · = ( ·𝑠 ‘ 𝑊 ) | ||
| lvecindp.s | ⊢ 𝑆 = ( LSubSp ‘ 𝑊 ) | ||
| lvecindp.w | ⊢ ( 𝜑 → 𝑊 ∈ LVec ) | ||
| lvecindp.u | ⊢ ( 𝜑 → 𝑈 ∈ 𝑆 ) | ||
| lvecindp.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) | ||
| lvecindp.n | ⊢ ( 𝜑 → ¬ 𝑋 ∈ 𝑈 ) | ||
| lvecindp.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝑈 ) | ||
| lvecindp.z | ⊢ ( 𝜑 → 𝑍 ∈ 𝑈 ) | ||
| lvecindp.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝐾 ) | ||
| lvecindp.b | ⊢ ( 𝜑 → 𝐵 ∈ 𝐾 ) | ||
| lvecindp.e | ⊢ ( 𝜑 → ( ( 𝐴 · 𝑋 ) + 𝑌 ) = ( ( 𝐵 · 𝑋 ) + 𝑍 ) ) | ||
| Assertion | lvecindp | ⊢ ( 𝜑 → ( 𝐴 = 𝐵 ∧ 𝑌 = 𝑍 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lvecindp.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| 2 | lvecindp.p | ⊢ + = ( +g ‘ 𝑊 ) | |
| 3 | lvecindp.f | ⊢ 𝐹 = ( Scalar ‘ 𝑊 ) | |
| 4 | lvecindp.k | ⊢ 𝐾 = ( Base ‘ 𝐹 ) | |
| 5 | lvecindp.t | ⊢ · = ( ·𝑠 ‘ 𝑊 ) | |
| 6 | lvecindp.s | ⊢ 𝑆 = ( LSubSp ‘ 𝑊 ) | |
| 7 | lvecindp.w | ⊢ ( 𝜑 → 𝑊 ∈ LVec ) | |
| 8 | lvecindp.u | ⊢ ( 𝜑 → 𝑈 ∈ 𝑆 ) | |
| 9 | lvecindp.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) | |
| 10 | lvecindp.n | ⊢ ( 𝜑 → ¬ 𝑋 ∈ 𝑈 ) | |
| 11 | lvecindp.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝑈 ) | |
| 12 | lvecindp.z | ⊢ ( 𝜑 → 𝑍 ∈ 𝑈 ) | |
| 13 | lvecindp.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝐾 ) | |
| 14 | lvecindp.b | ⊢ ( 𝜑 → 𝐵 ∈ 𝐾 ) | |
| 15 | lvecindp.e | ⊢ ( 𝜑 → ( ( 𝐴 · 𝑋 ) + 𝑌 ) = ( ( 𝐵 · 𝑋 ) + 𝑍 ) ) | |
| 16 | eqid | ⊢ ( 0g ‘ 𝑊 ) = ( 0g ‘ 𝑊 ) | |
| 17 | eqid | ⊢ ( Cntz ‘ 𝑊 ) = ( Cntz ‘ 𝑊 ) | |
| 18 | lveclmod | ⊢ ( 𝑊 ∈ LVec → 𝑊 ∈ LMod ) | |
| 19 | 7 18 | syl | ⊢ ( 𝜑 → 𝑊 ∈ LMod ) |
| 20 | eqid | ⊢ ( LSpan ‘ 𝑊 ) = ( LSpan ‘ 𝑊 ) | |
| 21 | 1 20 | lspsnsubg | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ) → ( ( LSpan ‘ 𝑊 ) ‘ { 𝑋 } ) ∈ ( SubGrp ‘ 𝑊 ) ) |
| 22 | 19 9 21 | syl2anc | ⊢ ( 𝜑 → ( ( LSpan ‘ 𝑊 ) ‘ { 𝑋 } ) ∈ ( SubGrp ‘ 𝑊 ) ) |
| 23 | 6 | lsssssubg | ⊢ ( 𝑊 ∈ LMod → 𝑆 ⊆ ( SubGrp ‘ 𝑊 ) ) |
| 24 | 19 23 | syl | ⊢ ( 𝜑 → 𝑆 ⊆ ( SubGrp ‘ 𝑊 ) ) |
| 25 | 24 8 | sseldd | ⊢ ( 𝜑 → 𝑈 ∈ ( SubGrp ‘ 𝑊 ) ) |
| 26 | 1 16 20 6 7 8 9 10 | lspdisj | ⊢ ( 𝜑 → ( ( ( LSpan ‘ 𝑊 ) ‘ { 𝑋 } ) ∩ 𝑈 ) = { ( 0g ‘ 𝑊 ) } ) |
| 27 | lmodabl | ⊢ ( 𝑊 ∈ LMod → 𝑊 ∈ Abel ) | |
| 28 | 19 27 | syl | ⊢ ( 𝜑 → 𝑊 ∈ Abel ) |
| 29 | 17 28 22 25 | ablcntzd | ⊢ ( 𝜑 → ( ( LSpan ‘ 𝑊 ) ‘ { 𝑋 } ) ⊆ ( ( Cntz ‘ 𝑊 ) ‘ 𝑈 ) ) |
| 30 | 1 5 3 4 20 19 13 9 | ellspsni | ⊢ ( 𝜑 → ( 𝐴 · 𝑋 ) ∈ ( ( LSpan ‘ 𝑊 ) ‘ { 𝑋 } ) ) |
| 31 | 1 5 3 4 20 19 14 9 | ellspsni | ⊢ ( 𝜑 → ( 𝐵 · 𝑋 ) ∈ ( ( LSpan ‘ 𝑊 ) ‘ { 𝑋 } ) ) |
| 32 | 2 16 17 22 25 26 29 30 31 11 12 15 | subgdisj1 | ⊢ ( 𝜑 → ( 𝐴 · 𝑋 ) = ( 𝐵 · 𝑋 ) ) |
| 33 | 16 6 19 8 10 | lssvneln0 | ⊢ ( 𝜑 → 𝑋 ≠ ( 0g ‘ 𝑊 ) ) |
| 34 | 1 5 3 4 16 7 13 14 9 33 | lvecvscan2 | ⊢ ( 𝜑 → ( ( 𝐴 · 𝑋 ) = ( 𝐵 · 𝑋 ) ↔ 𝐴 = 𝐵 ) ) |
| 35 | 32 34 | mpbid | ⊢ ( 𝜑 → 𝐴 = 𝐵 ) |
| 36 | 2 16 17 22 25 26 29 30 31 11 12 15 | subgdisj2 | ⊢ ( 𝜑 → 𝑌 = 𝑍 ) |
| 37 | 35 36 | jca | ⊢ ( 𝜑 → ( 𝐴 = 𝐵 ∧ 𝑌 = 𝑍 ) ) |