This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Compute the X coefficient in a sum with an independent vector X (first conjunct), which can then be removed to continue with the remaining vectors summed in expressions Y and Z (second conjunct). Typically, U is the span of the remaining vectors. (Contributed by NM, 5-Apr-2015) (Revised by Mario Carneiro, 21-Apr-2016) (Proof shortened by AV, 19-Jul-2022)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lvecindp.v | ||
| lvecindp.p | |||
| lvecindp.f | |||
| lvecindp.k | |||
| lvecindp.t | |||
| lvecindp.s | |||
| lvecindp.w | |||
| lvecindp.u | |||
| lvecindp.x | |||
| lvecindp.n | |||
| lvecindp.y | |||
| lvecindp.z | |||
| lvecindp.a | |||
| lvecindp.b | |||
| lvecindp.e | |||
| Assertion | lvecindp |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lvecindp.v | ||
| 2 | lvecindp.p | ||
| 3 | lvecindp.f | ||
| 4 | lvecindp.k | ||
| 5 | lvecindp.t | ||
| 6 | lvecindp.s | ||
| 7 | lvecindp.w | ||
| 8 | lvecindp.u | ||
| 9 | lvecindp.x | ||
| 10 | lvecindp.n | ||
| 11 | lvecindp.y | ||
| 12 | lvecindp.z | ||
| 13 | lvecindp.a | ||
| 14 | lvecindp.b | ||
| 15 | lvecindp.e | ||
| 16 | eqid | ||
| 17 | eqid | ||
| 18 | lveclmod | ||
| 19 | 7 18 | syl | |
| 20 | eqid | ||
| 21 | 1 20 | lspsnsubg | |
| 22 | 19 9 21 | syl2anc | |
| 23 | 6 | lsssssubg | |
| 24 | 19 23 | syl | |
| 25 | 24 8 | sseldd | |
| 26 | 1 16 20 6 7 8 9 10 | lspdisj | |
| 27 | lmodabl | ||
| 28 | 19 27 | syl | |
| 29 | 17 28 22 25 | ablcntzd | |
| 30 | 1 5 3 4 20 19 13 9 | ellspsni | |
| 31 | 1 5 3 4 20 19 14 9 | ellspsni | |
| 32 | 2 16 17 22 25 26 29 30 31 11 12 15 | subgdisj1 | |
| 33 | 16 6 19 8 10 | lssvneln0 | |
| 34 | 1 5 3 4 16 7 13 14 9 33 | lvecvscan2 | |
| 35 | 32 34 | mpbid | |
| 36 | 2 16 17 22 25 26 29 30 31 11 12 15 | subgdisj2 | |
| 37 | 35 36 | jca |