This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The span of a vector not in a subspace is disjoint with the subspace. (Contributed by NM, 6-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lspdisj.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| lspdisj.o | ⊢ 0 = ( 0g ‘ 𝑊 ) | ||
| lspdisj.n | ⊢ 𝑁 = ( LSpan ‘ 𝑊 ) | ||
| lspdisj.s | ⊢ 𝑆 = ( LSubSp ‘ 𝑊 ) | ||
| lspdisj.w | ⊢ ( 𝜑 → 𝑊 ∈ LVec ) | ||
| lspdisj.u | ⊢ ( 𝜑 → 𝑈 ∈ 𝑆 ) | ||
| lspdisj.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) | ||
| lspdisj.e | ⊢ ( 𝜑 → ¬ 𝑋 ∈ 𝑈 ) | ||
| Assertion | lspdisj | ⊢ ( 𝜑 → ( ( 𝑁 ‘ { 𝑋 } ) ∩ 𝑈 ) = { 0 } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lspdisj.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| 2 | lspdisj.o | ⊢ 0 = ( 0g ‘ 𝑊 ) | |
| 3 | lspdisj.n | ⊢ 𝑁 = ( LSpan ‘ 𝑊 ) | |
| 4 | lspdisj.s | ⊢ 𝑆 = ( LSubSp ‘ 𝑊 ) | |
| 5 | lspdisj.w | ⊢ ( 𝜑 → 𝑊 ∈ LVec ) | |
| 6 | lspdisj.u | ⊢ ( 𝜑 → 𝑈 ∈ 𝑆 ) | |
| 7 | lspdisj.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) | |
| 8 | lspdisj.e | ⊢ ( 𝜑 → ¬ 𝑋 ∈ 𝑈 ) | |
| 9 | lveclmod | ⊢ ( 𝑊 ∈ LVec → 𝑊 ∈ LMod ) | |
| 10 | 5 9 | syl | ⊢ ( 𝜑 → 𝑊 ∈ LMod ) |
| 11 | eqid | ⊢ ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑊 ) | |
| 12 | eqid | ⊢ ( Base ‘ ( Scalar ‘ 𝑊 ) ) = ( Base ‘ ( Scalar ‘ 𝑊 ) ) | |
| 13 | eqid | ⊢ ( ·𝑠 ‘ 𝑊 ) = ( ·𝑠 ‘ 𝑊 ) | |
| 14 | 11 12 1 13 3 | ellspsn | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ) → ( 𝑣 ∈ ( 𝑁 ‘ { 𝑋 } ) ↔ ∃ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) 𝑣 = ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑋 ) ) ) |
| 15 | 10 7 14 | syl2anc | ⊢ ( 𝜑 → ( 𝑣 ∈ ( 𝑁 ‘ { 𝑋 } ) ↔ ∃ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) 𝑣 = ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑋 ) ) ) |
| 16 | 15 | biimpa | ⊢ ( ( 𝜑 ∧ 𝑣 ∈ ( 𝑁 ‘ { 𝑋 } ) ) → ∃ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) 𝑣 = ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑋 ) ) |
| 17 | 16 | adantrr | ⊢ ( ( 𝜑 ∧ ( 𝑣 ∈ ( 𝑁 ‘ { 𝑋 } ) ∧ 𝑣 ∈ 𝑈 ) ) → ∃ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) 𝑣 = ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑋 ) ) |
| 18 | simprr | ⊢ ( ( ( 𝜑 ∧ 𝑣 ∈ 𝑈 ) ∧ ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑣 = ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑋 ) ) ) → 𝑣 = ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑋 ) ) | |
| 19 | 8 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑣 ∈ 𝑈 ) ∧ ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑣 = ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑋 ) ) ) → ¬ 𝑋 ∈ 𝑈 ) |
| 20 | simplr | ⊢ ( ( ( 𝜑 ∧ 𝑣 ∈ 𝑈 ) ∧ ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑣 = ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑋 ) ) ) → 𝑣 ∈ 𝑈 ) | |
| 21 | 18 20 | eqeltrrd | ⊢ ( ( ( 𝜑 ∧ 𝑣 ∈ 𝑈 ) ∧ ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑣 = ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑋 ) ) ) → ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑋 ) ∈ 𝑈 ) |
| 22 | eqid | ⊢ ( 0g ‘ ( Scalar ‘ 𝑊 ) ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) | |
| 23 | 5 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑣 ∈ 𝑈 ) ∧ ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑣 = ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑋 ) ) ) → 𝑊 ∈ LVec ) |
| 24 | 6 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑣 ∈ 𝑈 ) ∧ ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑣 = ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑋 ) ) ) → 𝑈 ∈ 𝑆 ) |
| 25 | 7 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑣 ∈ 𝑈 ) ∧ ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑣 = ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑋 ) ) ) → 𝑋 ∈ 𝑉 ) |
| 26 | simprl | ⊢ ( ( ( 𝜑 ∧ 𝑣 ∈ 𝑈 ) ∧ ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑣 = ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑋 ) ) ) → 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) | |
| 27 | 1 13 11 12 22 4 23 24 25 26 | lssvs0or | ⊢ ( ( ( 𝜑 ∧ 𝑣 ∈ 𝑈 ) ∧ ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑣 = ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑋 ) ) ) → ( ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑋 ) ∈ 𝑈 ↔ ( 𝑘 = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ∨ 𝑋 ∈ 𝑈 ) ) ) |
| 28 | 21 27 | mpbid | ⊢ ( ( ( 𝜑 ∧ 𝑣 ∈ 𝑈 ) ∧ ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑣 = ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑋 ) ) ) → ( 𝑘 = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ∨ 𝑋 ∈ 𝑈 ) ) |
| 29 | 28 | orcomd | ⊢ ( ( ( 𝜑 ∧ 𝑣 ∈ 𝑈 ) ∧ ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑣 = ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑋 ) ) ) → ( 𝑋 ∈ 𝑈 ∨ 𝑘 = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) ) |
| 30 | 29 | ord | ⊢ ( ( ( 𝜑 ∧ 𝑣 ∈ 𝑈 ) ∧ ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑣 = ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑋 ) ) ) → ( ¬ 𝑋 ∈ 𝑈 → 𝑘 = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) ) |
| 31 | 19 30 | mpd | ⊢ ( ( ( 𝜑 ∧ 𝑣 ∈ 𝑈 ) ∧ ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑣 = ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑋 ) ) ) → 𝑘 = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 32 | 31 | oveq1d | ⊢ ( ( ( 𝜑 ∧ 𝑣 ∈ 𝑈 ) ∧ ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑣 = ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑋 ) ) ) → ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑋 ) = ( ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ( ·𝑠 ‘ 𝑊 ) 𝑋 ) ) |
| 33 | 10 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑣 ∈ 𝑈 ) ∧ ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑣 = ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑋 ) ) ) → 𝑊 ∈ LMod ) |
| 34 | 1 11 13 22 2 | lmod0vs | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ) → ( ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ( ·𝑠 ‘ 𝑊 ) 𝑋 ) = 0 ) |
| 35 | 33 25 34 | syl2anc | ⊢ ( ( ( 𝜑 ∧ 𝑣 ∈ 𝑈 ) ∧ ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑣 = ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑋 ) ) ) → ( ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ( ·𝑠 ‘ 𝑊 ) 𝑋 ) = 0 ) |
| 36 | 18 32 35 | 3eqtrd | ⊢ ( ( ( 𝜑 ∧ 𝑣 ∈ 𝑈 ) ∧ ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑣 = ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑋 ) ) ) → 𝑣 = 0 ) |
| 37 | 36 | exp32 | ⊢ ( ( 𝜑 ∧ 𝑣 ∈ 𝑈 ) → ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) → ( 𝑣 = ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑋 ) → 𝑣 = 0 ) ) ) |
| 38 | 37 | adantrl | ⊢ ( ( 𝜑 ∧ ( 𝑣 ∈ ( 𝑁 ‘ { 𝑋 } ) ∧ 𝑣 ∈ 𝑈 ) ) → ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) → ( 𝑣 = ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑋 ) → 𝑣 = 0 ) ) ) |
| 39 | 38 | rexlimdv | ⊢ ( ( 𝜑 ∧ ( 𝑣 ∈ ( 𝑁 ‘ { 𝑋 } ) ∧ 𝑣 ∈ 𝑈 ) ) → ( ∃ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) 𝑣 = ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑋 ) → 𝑣 = 0 ) ) |
| 40 | 17 39 | mpd | ⊢ ( ( 𝜑 ∧ ( 𝑣 ∈ ( 𝑁 ‘ { 𝑋 } ) ∧ 𝑣 ∈ 𝑈 ) ) → 𝑣 = 0 ) |
| 41 | 40 | ex | ⊢ ( 𝜑 → ( ( 𝑣 ∈ ( 𝑁 ‘ { 𝑋 } ) ∧ 𝑣 ∈ 𝑈 ) → 𝑣 = 0 ) ) |
| 42 | elin | ⊢ ( 𝑣 ∈ ( ( 𝑁 ‘ { 𝑋 } ) ∩ 𝑈 ) ↔ ( 𝑣 ∈ ( 𝑁 ‘ { 𝑋 } ) ∧ 𝑣 ∈ 𝑈 ) ) | |
| 43 | velsn | ⊢ ( 𝑣 ∈ { 0 } ↔ 𝑣 = 0 ) | |
| 44 | 41 42 43 | 3imtr4g | ⊢ ( 𝜑 → ( 𝑣 ∈ ( ( 𝑁 ‘ { 𝑋 } ) ∩ 𝑈 ) → 𝑣 ∈ { 0 } ) ) |
| 45 | 44 | ssrdv | ⊢ ( 𝜑 → ( ( 𝑁 ‘ { 𝑋 } ) ∩ 𝑈 ) ⊆ { 0 } ) |
| 46 | 1 4 3 | lspsncl | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ) → ( 𝑁 ‘ { 𝑋 } ) ∈ 𝑆 ) |
| 47 | 10 7 46 | syl2anc | ⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑋 } ) ∈ 𝑆 ) |
| 48 | 2 4 | lss0ss | ⊢ ( ( 𝑊 ∈ LMod ∧ ( 𝑁 ‘ { 𝑋 } ) ∈ 𝑆 ) → { 0 } ⊆ ( 𝑁 ‘ { 𝑋 } ) ) |
| 49 | 10 47 48 | syl2anc | ⊢ ( 𝜑 → { 0 } ⊆ ( 𝑁 ‘ { 𝑋 } ) ) |
| 50 | 2 4 | lss0ss | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ) → { 0 } ⊆ 𝑈 ) |
| 51 | 10 6 50 | syl2anc | ⊢ ( 𝜑 → { 0 } ⊆ 𝑈 ) |
| 52 | 49 51 | ssind | ⊢ ( 𝜑 → { 0 } ⊆ ( ( 𝑁 ‘ { 𝑋 } ) ∩ 𝑈 ) ) |
| 53 | 45 52 | eqssd | ⊢ ( 𝜑 → ( ( 𝑁 ‘ { 𝑋 } ) ∩ 𝑈 ) = { 0 } ) |