This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Vectors belonging to disjoint commuting subgroups are uniquely determined by their sum. (Contributed by NM, 2-Apr-2014) (Revised by Mario Carneiro, 19-Apr-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | subgdisj.p | ⊢ + = ( +g ‘ 𝐺 ) | |
| subgdisj.o | ⊢ 0 = ( 0g ‘ 𝐺 ) | ||
| subgdisj.z | ⊢ 𝑍 = ( Cntz ‘ 𝐺 ) | ||
| subgdisj.t | ⊢ ( 𝜑 → 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ) | ||
| subgdisj.u | ⊢ ( 𝜑 → 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) | ||
| subgdisj.i | ⊢ ( 𝜑 → ( 𝑇 ∩ 𝑈 ) = { 0 } ) | ||
| subgdisj.s | ⊢ ( 𝜑 → 𝑇 ⊆ ( 𝑍 ‘ 𝑈 ) ) | ||
| subgdisj.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝑇 ) | ||
| subgdisj.c | ⊢ ( 𝜑 → 𝐶 ∈ 𝑇 ) | ||
| subgdisj.b | ⊢ ( 𝜑 → 𝐵 ∈ 𝑈 ) | ||
| subgdisj.d | ⊢ ( 𝜑 → 𝐷 ∈ 𝑈 ) | ||
| subgdisj.j | ⊢ ( 𝜑 → ( 𝐴 + 𝐵 ) = ( 𝐶 + 𝐷 ) ) | ||
| Assertion | subgdisj1 | ⊢ ( 𝜑 → 𝐴 = 𝐶 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | subgdisj.p | ⊢ + = ( +g ‘ 𝐺 ) | |
| 2 | subgdisj.o | ⊢ 0 = ( 0g ‘ 𝐺 ) | |
| 3 | subgdisj.z | ⊢ 𝑍 = ( Cntz ‘ 𝐺 ) | |
| 4 | subgdisj.t | ⊢ ( 𝜑 → 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ) | |
| 5 | subgdisj.u | ⊢ ( 𝜑 → 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) | |
| 6 | subgdisj.i | ⊢ ( 𝜑 → ( 𝑇 ∩ 𝑈 ) = { 0 } ) | |
| 7 | subgdisj.s | ⊢ ( 𝜑 → 𝑇 ⊆ ( 𝑍 ‘ 𝑈 ) ) | |
| 8 | subgdisj.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝑇 ) | |
| 9 | subgdisj.c | ⊢ ( 𝜑 → 𝐶 ∈ 𝑇 ) | |
| 10 | subgdisj.b | ⊢ ( 𝜑 → 𝐵 ∈ 𝑈 ) | |
| 11 | subgdisj.d | ⊢ ( 𝜑 → 𝐷 ∈ 𝑈 ) | |
| 12 | subgdisj.j | ⊢ ( 𝜑 → ( 𝐴 + 𝐵 ) = ( 𝐶 + 𝐷 ) ) | |
| 13 | eqid | ⊢ ( -g ‘ 𝐺 ) = ( -g ‘ 𝐺 ) | |
| 14 | 13 | subgsubcl | ⊢ ( ( 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ 𝑇 ∧ 𝐶 ∈ 𝑇 ) → ( 𝐴 ( -g ‘ 𝐺 ) 𝐶 ) ∈ 𝑇 ) |
| 15 | 4 8 9 14 | syl3anc | ⊢ ( 𝜑 → ( 𝐴 ( -g ‘ 𝐺 ) 𝐶 ) ∈ 𝑇 ) |
| 16 | 7 9 | sseldd | ⊢ ( 𝜑 → 𝐶 ∈ ( 𝑍 ‘ 𝑈 ) ) |
| 17 | 1 3 | cntzi | ⊢ ( ( 𝐶 ∈ ( 𝑍 ‘ 𝑈 ) ∧ 𝐵 ∈ 𝑈 ) → ( 𝐶 + 𝐵 ) = ( 𝐵 + 𝐶 ) ) |
| 18 | 16 10 17 | syl2anc | ⊢ ( 𝜑 → ( 𝐶 + 𝐵 ) = ( 𝐵 + 𝐶 ) ) |
| 19 | 12 18 | oveq12d | ⊢ ( 𝜑 → ( ( 𝐴 + 𝐵 ) ( -g ‘ 𝐺 ) ( 𝐶 + 𝐵 ) ) = ( ( 𝐶 + 𝐷 ) ( -g ‘ 𝐺 ) ( 𝐵 + 𝐶 ) ) ) |
| 20 | subgrcl | ⊢ ( 𝑇 ∈ ( SubGrp ‘ 𝐺 ) → 𝐺 ∈ Grp ) | |
| 21 | 4 20 | syl | ⊢ ( 𝜑 → 𝐺 ∈ Grp ) |
| 22 | eqid | ⊢ ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) | |
| 23 | 22 | subgss | ⊢ ( 𝑇 ∈ ( SubGrp ‘ 𝐺 ) → 𝑇 ⊆ ( Base ‘ 𝐺 ) ) |
| 24 | 4 23 | syl | ⊢ ( 𝜑 → 𝑇 ⊆ ( Base ‘ 𝐺 ) ) |
| 25 | 24 8 | sseldd | ⊢ ( 𝜑 → 𝐴 ∈ ( Base ‘ 𝐺 ) ) |
| 26 | 22 | subgss | ⊢ ( 𝑈 ∈ ( SubGrp ‘ 𝐺 ) → 𝑈 ⊆ ( Base ‘ 𝐺 ) ) |
| 27 | 5 26 | syl | ⊢ ( 𝜑 → 𝑈 ⊆ ( Base ‘ 𝐺 ) ) |
| 28 | 27 10 | sseldd | ⊢ ( 𝜑 → 𝐵 ∈ ( Base ‘ 𝐺 ) ) |
| 29 | 22 1 | grpcl | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ ( Base ‘ 𝐺 ) ∧ 𝐵 ∈ ( Base ‘ 𝐺 ) ) → ( 𝐴 + 𝐵 ) ∈ ( Base ‘ 𝐺 ) ) |
| 30 | 21 25 28 29 | syl3anc | ⊢ ( 𝜑 → ( 𝐴 + 𝐵 ) ∈ ( Base ‘ 𝐺 ) ) |
| 31 | 24 9 | sseldd | ⊢ ( 𝜑 → 𝐶 ∈ ( Base ‘ 𝐺 ) ) |
| 32 | 22 1 13 | grpsubsub4 | ⊢ ( ( 𝐺 ∈ Grp ∧ ( ( 𝐴 + 𝐵 ) ∈ ( Base ‘ 𝐺 ) ∧ 𝐵 ∈ ( Base ‘ 𝐺 ) ∧ 𝐶 ∈ ( Base ‘ 𝐺 ) ) ) → ( ( ( 𝐴 + 𝐵 ) ( -g ‘ 𝐺 ) 𝐵 ) ( -g ‘ 𝐺 ) 𝐶 ) = ( ( 𝐴 + 𝐵 ) ( -g ‘ 𝐺 ) ( 𝐶 + 𝐵 ) ) ) |
| 33 | 21 30 28 31 32 | syl13anc | ⊢ ( 𝜑 → ( ( ( 𝐴 + 𝐵 ) ( -g ‘ 𝐺 ) 𝐵 ) ( -g ‘ 𝐺 ) 𝐶 ) = ( ( 𝐴 + 𝐵 ) ( -g ‘ 𝐺 ) ( 𝐶 + 𝐵 ) ) ) |
| 34 | 12 30 | eqeltrrd | ⊢ ( 𝜑 → ( 𝐶 + 𝐷 ) ∈ ( Base ‘ 𝐺 ) ) |
| 35 | 22 1 13 | grpsubsub4 | ⊢ ( ( 𝐺 ∈ Grp ∧ ( ( 𝐶 + 𝐷 ) ∈ ( Base ‘ 𝐺 ) ∧ 𝐶 ∈ ( Base ‘ 𝐺 ) ∧ 𝐵 ∈ ( Base ‘ 𝐺 ) ) ) → ( ( ( 𝐶 + 𝐷 ) ( -g ‘ 𝐺 ) 𝐶 ) ( -g ‘ 𝐺 ) 𝐵 ) = ( ( 𝐶 + 𝐷 ) ( -g ‘ 𝐺 ) ( 𝐵 + 𝐶 ) ) ) |
| 36 | 21 34 31 28 35 | syl13anc | ⊢ ( 𝜑 → ( ( ( 𝐶 + 𝐷 ) ( -g ‘ 𝐺 ) 𝐶 ) ( -g ‘ 𝐺 ) 𝐵 ) = ( ( 𝐶 + 𝐷 ) ( -g ‘ 𝐺 ) ( 𝐵 + 𝐶 ) ) ) |
| 37 | 19 33 36 | 3eqtr4d | ⊢ ( 𝜑 → ( ( ( 𝐴 + 𝐵 ) ( -g ‘ 𝐺 ) 𝐵 ) ( -g ‘ 𝐺 ) 𝐶 ) = ( ( ( 𝐶 + 𝐷 ) ( -g ‘ 𝐺 ) 𝐶 ) ( -g ‘ 𝐺 ) 𝐵 ) ) |
| 38 | 22 1 13 | grppncan | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ ( Base ‘ 𝐺 ) ∧ 𝐵 ∈ ( Base ‘ 𝐺 ) ) → ( ( 𝐴 + 𝐵 ) ( -g ‘ 𝐺 ) 𝐵 ) = 𝐴 ) |
| 39 | 21 25 28 38 | syl3anc | ⊢ ( 𝜑 → ( ( 𝐴 + 𝐵 ) ( -g ‘ 𝐺 ) 𝐵 ) = 𝐴 ) |
| 40 | 39 | oveq1d | ⊢ ( 𝜑 → ( ( ( 𝐴 + 𝐵 ) ( -g ‘ 𝐺 ) 𝐵 ) ( -g ‘ 𝐺 ) 𝐶 ) = ( 𝐴 ( -g ‘ 𝐺 ) 𝐶 ) ) |
| 41 | 1 3 | cntzi | ⊢ ( ( 𝐶 ∈ ( 𝑍 ‘ 𝑈 ) ∧ 𝐷 ∈ 𝑈 ) → ( 𝐶 + 𝐷 ) = ( 𝐷 + 𝐶 ) ) |
| 42 | 16 11 41 | syl2anc | ⊢ ( 𝜑 → ( 𝐶 + 𝐷 ) = ( 𝐷 + 𝐶 ) ) |
| 43 | 42 | oveq1d | ⊢ ( 𝜑 → ( ( 𝐶 + 𝐷 ) ( -g ‘ 𝐺 ) 𝐶 ) = ( ( 𝐷 + 𝐶 ) ( -g ‘ 𝐺 ) 𝐶 ) ) |
| 44 | 27 11 | sseldd | ⊢ ( 𝜑 → 𝐷 ∈ ( Base ‘ 𝐺 ) ) |
| 45 | 22 1 13 | grppncan | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐷 ∈ ( Base ‘ 𝐺 ) ∧ 𝐶 ∈ ( Base ‘ 𝐺 ) ) → ( ( 𝐷 + 𝐶 ) ( -g ‘ 𝐺 ) 𝐶 ) = 𝐷 ) |
| 46 | 21 44 31 45 | syl3anc | ⊢ ( 𝜑 → ( ( 𝐷 + 𝐶 ) ( -g ‘ 𝐺 ) 𝐶 ) = 𝐷 ) |
| 47 | 43 46 | eqtrd | ⊢ ( 𝜑 → ( ( 𝐶 + 𝐷 ) ( -g ‘ 𝐺 ) 𝐶 ) = 𝐷 ) |
| 48 | 47 | oveq1d | ⊢ ( 𝜑 → ( ( ( 𝐶 + 𝐷 ) ( -g ‘ 𝐺 ) 𝐶 ) ( -g ‘ 𝐺 ) 𝐵 ) = ( 𝐷 ( -g ‘ 𝐺 ) 𝐵 ) ) |
| 49 | 37 40 48 | 3eqtr3d | ⊢ ( 𝜑 → ( 𝐴 ( -g ‘ 𝐺 ) 𝐶 ) = ( 𝐷 ( -g ‘ 𝐺 ) 𝐵 ) ) |
| 50 | 13 | subgsubcl | ⊢ ( ( 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐷 ∈ 𝑈 ∧ 𝐵 ∈ 𝑈 ) → ( 𝐷 ( -g ‘ 𝐺 ) 𝐵 ) ∈ 𝑈 ) |
| 51 | 5 11 10 50 | syl3anc | ⊢ ( 𝜑 → ( 𝐷 ( -g ‘ 𝐺 ) 𝐵 ) ∈ 𝑈 ) |
| 52 | 49 51 | eqeltrd | ⊢ ( 𝜑 → ( 𝐴 ( -g ‘ 𝐺 ) 𝐶 ) ∈ 𝑈 ) |
| 53 | 15 52 | elind | ⊢ ( 𝜑 → ( 𝐴 ( -g ‘ 𝐺 ) 𝐶 ) ∈ ( 𝑇 ∩ 𝑈 ) ) |
| 54 | 53 6 | eleqtrd | ⊢ ( 𝜑 → ( 𝐴 ( -g ‘ 𝐺 ) 𝐶 ) ∈ { 0 } ) |
| 55 | elsni | ⊢ ( ( 𝐴 ( -g ‘ 𝐺 ) 𝐶 ) ∈ { 0 } → ( 𝐴 ( -g ‘ 𝐺 ) 𝐶 ) = 0 ) | |
| 56 | 54 55 | syl | ⊢ ( 𝜑 → ( 𝐴 ( -g ‘ 𝐺 ) 𝐶 ) = 0 ) |
| 57 | 22 2 13 | grpsubeq0 | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ ( Base ‘ 𝐺 ) ∧ 𝐶 ∈ ( Base ‘ 𝐺 ) ) → ( ( 𝐴 ( -g ‘ 𝐺 ) 𝐶 ) = 0 ↔ 𝐴 = 𝐶 ) ) |
| 58 | 21 25 31 57 | syl3anc | ⊢ ( 𝜑 → ( ( 𝐴 ( -g ‘ 𝐺 ) 𝐶 ) = 0 ↔ 𝐴 = 𝐶 ) ) |
| 59 | 56 58 | mpbid | ⊢ ( 𝜑 → 𝐴 = 𝐶 ) |