This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Vectors belonging to disjoint commuting subgroups are uniquely determined by their sum. (Contributed by NM, 12-Jul-2014) (Revised by Mario Carneiro, 19-Apr-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | subgdisj.p | ⊢ + = ( +g ‘ 𝐺 ) | |
| subgdisj.o | ⊢ 0 = ( 0g ‘ 𝐺 ) | ||
| subgdisj.z | ⊢ 𝑍 = ( Cntz ‘ 𝐺 ) | ||
| subgdisj.t | ⊢ ( 𝜑 → 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ) | ||
| subgdisj.u | ⊢ ( 𝜑 → 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) | ||
| subgdisj.i | ⊢ ( 𝜑 → ( 𝑇 ∩ 𝑈 ) = { 0 } ) | ||
| subgdisj.s | ⊢ ( 𝜑 → 𝑇 ⊆ ( 𝑍 ‘ 𝑈 ) ) | ||
| subgdisj.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝑇 ) | ||
| subgdisj.c | ⊢ ( 𝜑 → 𝐶 ∈ 𝑇 ) | ||
| subgdisj.b | ⊢ ( 𝜑 → 𝐵 ∈ 𝑈 ) | ||
| subgdisj.d | ⊢ ( 𝜑 → 𝐷 ∈ 𝑈 ) | ||
| subgdisj.j | ⊢ ( 𝜑 → ( 𝐴 + 𝐵 ) = ( 𝐶 + 𝐷 ) ) | ||
| Assertion | subgdisj2 | ⊢ ( 𝜑 → 𝐵 = 𝐷 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | subgdisj.p | ⊢ + = ( +g ‘ 𝐺 ) | |
| 2 | subgdisj.o | ⊢ 0 = ( 0g ‘ 𝐺 ) | |
| 3 | subgdisj.z | ⊢ 𝑍 = ( Cntz ‘ 𝐺 ) | |
| 4 | subgdisj.t | ⊢ ( 𝜑 → 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ) | |
| 5 | subgdisj.u | ⊢ ( 𝜑 → 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) | |
| 6 | subgdisj.i | ⊢ ( 𝜑 → ( 𝑇 ∩ 𝑈 ) = { 0 } ) | |
| 7 | subgdisj.s | ⊢ ( 𝜑 → 𝑇 ⊆ ( 𝑍 ‘ 𝑈 ) ) | |
| 8 | subgdisj.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝑇 ) | |
| 9 | subgdisj.c | ⊢ ( 𝜑 → 𝐶 ∈ 𝑇 ) | |
| 10 | subgdisj.b | ⊢ ( 𝜑 → 𝐵 ∈ 𝑈 ) | |
| 11 | subgdisj.d | ⊢ ( 𝜑 → 𝐷 ∈ 𝑈 ) | |
| 12 | subgdisj.j | ⊢ ( 𝜑 → ( 𝐴 + 𝐵 ) = ( 𝐶 + 𝐷 ) ) | |
| 13 | incom | ⊢ ( 𝑇 ∩ 𝑈 ) = ( 𝑈 ∩ 𝑇 ) | |
| 14 | 13 6 | eqtr3id | ⊢ ( 𝜑 → ( 𝑈 ∩ 𝑇 ) = { 0 } ) |
| 15 | 3 4 5 7 | cntzrecd | ⊢ ( 𝜑 → 𝑈 ⊆ ( 𝑍 ‘ 𝑇 ) ) |
| 16 | 7 8 | sseldd | ⊢ ( 𝜑 → 𝐴 ∈ ( 𝑍 ‘ 𝑈 ) ) |
| 17 | 1 3 | cntzi | ⊢ ( ( 𝐴 ∈ ( 𝑍 ‘ 𝑈 ) ∧ 𝐵 ∈ 𝑈 ) → ( 𝐴 + 𝐵 ) = ( 𝐵 + 𝐴 ) ) |
| 18 | 16 10 17 | syl2anc | ⊢ ( 𝜑 → ( 𝐴 + 𝐵 ) = ( 𝐵 + 𝐴 ) ) |
| 19 | 7 9 | sseldd | ⊢ ( 𝜑 → 𝐶 ∈ ( 𝑍 ‘ 𝑈 ) ) |
| 20 | 1 3 | cntzi | ⊢ ( ( 𝐶 ∈ ( 𝑍 ‘ 𝑈 ) ∧ 𝐷 ∈ 𝑈 ) → ( 𝐶 + 𝐷 ) = ( 𝐷 + 𝐶 ) ) |
| 21 | 19 11 20 | syl2anc | ⊢ ( 𝜑 → ( 𝐶 + 𝐷 ) = ( 𝐷 + 𝐶 ) ) |
| 22 | 12 18 21 | 3eqtr3d | ⊢ ( 𝜑 → ( 𝐵 + 𝐴 ) = ( 𝐷 + 𝐶 ) ) |
| 23 | 1 2 3 5 4 14 15 10 11 8 9 22 | subgdisj1 | ⊢ ( 𝜑 → 𝐵 = 𝐷 ) |