This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Ordering of signed reals in terms of positive reals. (Contributed by NM, 20-Feb-1996) (Revised by Mario Carneiro, 12-Aug-2015) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ltsrpr | ⊢ ( [ 〈 𝐴 , 𝐵 〉 ] ~R <R [ 〈 𝐶 , 𝐷 〉 ] ~R ↔ ( 𝐴 +P 𝐷 ) <P ( 𝐵 +P 𝐶 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | enrer | ⊢ ~R Er ( P × P ) | |
| 2 | erdm | ⊢ ( ~R Er ( P × P ) → dom ~R = ( P × P ) ) | |
| 3 | 1 2 | ax-mp | ⊢ dom ~R = ( P × P ) |
| 4 | df-nr | ⊢ R = ( ( P × P ) / ~R ) | |
| 5 | ltrelsr | ⊢ <R ⊆ ( R × R ) | |
| 6 | ltrelpr | ⊢ <P ⊆ ( P × P ) | |
| 7 | 0npr | ⊢ ¬ ∅ ∈ P | |
| 8 | dmplp | ⊢ dom +P = ( P × P ) | |
| 9 | enrex | ⊢ ~R ∈ V | |
| 10 | df-ltr | ⊢ <R = { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑥 ∈ R ∧ 𝑦 ∈ R ) ∧ ∃ 𝑧 ∃ 𝑤 ∃ 𝑣 ∃ 𝑢 ( ( 𝑥 = [ 〈 𝑧 , 𝑤 〉 ] ~R ∧ 𝑦 = [ 〈 𝑣 , 𝑢 〉 ] ~R ) ∧ ( 𝑧 +P 𝑢 ) <P ( 𝑤 +P 𝑣 ) ) ) } | |
| 11 | addclpr | ⊢ ( ( 𝑤 ∈ P ∧ 𝑣 ∈ P ) → ( 𝑤 +P 𝑣 ) ∈ P ) | |
| 12 | 11 | ad2ant2lr | ⊢ ( ( ( 𝑧 ∈ P ∧ 𝑤 ∈ P ) ∧ ( 𝑣 ∈ P ∧ 𝑢 ∈ P ) ) → ( 𝑤 +P 𝑣 ) ∈ P ) |
| 13 | addclpr | ⊢ ( ( 𝐵 ∈ P ∧ 𝐶 ∈ P ) → ( 𝐵 +P 𝐶 ) ∈ P ) | |
| 14 | 13 | ad2ant2lr | ⊢ ( ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ) ∧ ( 𝐶 ∈ P ∧ 𝐷 ∈ P ) ) → ( 𝐵 +P 𝐶 ) ∈ P ) |
| 15 | 12 14 | anim12ci | ⊢ ( ( ( ( 𝑧 ∈ P ∧ 𝑤 ∈ P ) ∧ ( 𝑣 ∈ P ∧ 𝑢 ∈ P ) ) ∧ ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ) ∧ ( 𝐶 ∈ P ∧ 𝐷 ∈ P ) ) ) → ( ( 𝐵 +P 𝐶 ) ∈ P ∧ ( 𝑤 +P 𝑣 ) ∈ P ) ) |
| 16 | 15 | an4s | ⊢ ( ( ( ( 𝑧 ∈ P ∧ 𝑤 ∈ P ) ∧ ( 𝐴 ∈ P ∧ 𝐵 ∈ P ) ) ∧ ( ( 𝑣 ∈ P ∧ 𝑢 ∈ P ) ∧ ( 𝐶 ∈ P ∧ 𝐷 ∈ P ) ) ) → ( ( 𝐵 +P 𝐶 ) ∈ P ∧ ( 𝑤 +P 𝑣 ) ∈ P ) ) |
| 17 | enreceq | ⊢ ( ( ( 𝑧 ∈ P ∧ 𝑤 ∈ P ) ∧ ( 𝐴 ∈ P ∧ 𝐵 ∈ P ) ) → ( [ 〈 𝑧 , 𝑤 〉 ] ~R = [ 〈 𝐴 , 𝐵 〉 ] ~R ↔ ( 𝑧 +P 𝐵 ) = ( 𝑤 +P 𝐴 ) ) ) | |
| 18 | enreceq | ⊢ ( ( ( 𝑣 ∈ P ∧ 𝑢 ∈ P ) ∧ ( 𝐶 ∈ P ∧ 𝐷 ∈ P ) ) → ( [ 〈 𝑣 , 𝑢 〉 ] ~R = [ 〈 𝐶 , 𝐷 〉 ] ~R ↔ ( 𝑣 +P 𝐷 ) = ( 𝑢 +P 𝐶 ) ) ) | |
| 19 | eqcom | ⊢ ( ( 𝑣 +P 𝐷 ) = ( 𝑢 +P 𝐶 ) ↔ ( 𝑢 +P 𝐶 ) = ( 𝑣 +P 𝐷 ) ) | |
| 20 | 18 19 | bitrdi | ⊢ ( ( ( 𝑣 ∈ P ∧ 𝑢 ∈ P ) ∧ ( 𝐶 ∈ P ∧ 𝐷 ∈ P ) ) → ( [ 〈 𝑣 , 𝑢 〉 ] ~R = [ 〈 𝐶 , 𝐷 〉 ] ~R ↔ ( 𝑢 +P 𝐶 ) = ( 𝑣 +P 𝐷 ) ) ) |
| 21 | 17 20 | bi2anan9 | ⊢ ( ( ( ( 𝑧 ∈ P ∧ 𝑤 ∈ P ) ∧ ( 𝐴 ∈ P ∧ 𝐵 ∈ P ) ) ∧ ( ( 𝑣 ∈ P ∧ 𝑢 ∈ P ) ∧ ( 𝐶 ∈ P ∧ 𝐷 ∈ P ) ) ) → ( ( [ 〈 𝑧 , 𝑤 〉 ] ~R = [ 〈 𝐴 , 𝐵 〉 ] ~R ∧ [ 〈 𝑣 , 𝑢 〉 ] ~R = [ 〈 𝐶 , 𝐷 〉 ] ~R ) ↔ ( ( 𝑧 +P 𝐵 ) = ( 𝑤 +P 𝐴 ) ∧ ( 𝑢 +P 𝐶 ) = ( 𝑣 +P 𝐷 ) ) ) ) |
| 22 | oveq12 | ⊢ ( ( ( 𝑧 +P 𝐵 ) = ( 𝑤 +P 𝐴 ) ∧ ( 𝑢 +P 𝐶 ) = ( 𝑣 +P 𝐷 ) ) → ( ( 𝑧 +P 𝐵 ) +P ( 𝑢 +P 𝐶 ) ) = ( ( 𝑤 +P 𝐴 ) +P ( 𝑣 +P 𝐷 ) ) ) | |
| 23 | addcompr | ⊢ ( 𝑢 +P 𝐵 ) = ( 𝐵 +P 𝑢 ) | |
| 24 | 23 | oveq1i | ⊢ ( ( 𝑢 +P 𝐵 ) +P 𝐶 ) = ( ( 𝐵 +P 𝑢 ) +P 𝐶 ) |
| 25 | addasspr | ⊢ ( ( 𝑢 +P 𝐵 ) +P 𝐶 ) = ( 𝑢 +P ( 𝐵 +P 𝐶 ) ) | |
| 26 | addasspr | ⊢ ( ( 𝐵 +P 𝑢 ) +P 𝐶 ) = ( 𝐵 +P ( 𝑢 +P 𝐶 ) ) | |
| 27 | 24 25 26 | 3eqtr3i | ⊢ ( 𝑢 +P ( 𝐵 +P 𝐶 ) ) = ( 𝐵 +P ( 𝑢 +P 𝐶 ) ) |
| 28 | 27 | oveq2i | ⊢ ( 𝑧 +P ( 𝑢 +P ( 𝐵 +P 𝐶 ) ) ) = ( 𝑧 +P ( 𝐵 +P ( 𝑢 +P 𝐶 ) ) ) |
| 29 | addasspr | ⊢ ( ( 𝑧 +P 𝑢 ) +P ( 𝐵 +P 𝐶 ) ) = ( 𝑧 +P ( 𝑢 +P ( 𝐵 +P 𝐶 ) ) ) | |
| 30 | addasspr | ⊢ ( ( 𝑧 +P 𝐵 ) +P ( 𝑢 +P 𝐶 ) ) = ( 𝑧 +P ( 𝐵 +P ( 𝑢 +P 𝐶 ) ) ) | |
| 31 | 28 29 30 | 3eqtr4i | ⊢ ( ( 𝑧 +P 𝑢 ) +P ( 𝐵 +P 𝐶 ) ) = ( ( 𝑧 +P 𝐵 ) +P ( 𝑢 +P 𝐶 ) ) |
| 32 | addcompr | ⊢ ( 𝑣 +P 𝐴 ) = ( 𝐴 +P 𝑣 ) | |
| 33 | 32 | oveq1i | ⊢ ( ( 𝑣 +P 𝐴 ) +P 𝐷 ) = ( ( 𝐴 +P 𝑣 ) +P 𝐷 ) |
| 34 | addasspr | ⊢ ( ( 𝑣 +P 𝐴 ) +P 𝐷 ) = ( 𝑣 +P ( 𝐴 +P 𝐷 ) ) | |
| 35 | addasspr | ⊢ ( ( 𝐴 +P 𝑣 ) +P 𝐷 ) = ( 𝐴 +P ( 𝑣 +P 𝐷 ) ) | |
| 36 | 33 34 35 | 3eqtr3i | ⊢ ( 𝑣 +P ( 𝐴 +P 𝐷 ) ) = ( 𝐴 +P ( 𝑣 +P 𝐷 ) ) |
| 37 | 36 | oveq2i | ⊢ ( 𝑤 +P ( 𝑣 +P ( 𝐴 +P 𝐷 ) ) ) = ( 𝑤 +P ( 𝐴 +P ( 𝑣 +P 𝐷 ) ) ) |
| 38 | addasspr | ⊢ ( ( 𝑤 +P 𝑣 ) +P ( 𝐴 +P 𝐷 ) ) = ( 𝑤 +P ( 𝑣 +P ( 𝐴 +P 𝐷 ) ) ) | |
| 39 | addasspr | ⊢ ( ( 𝑤 +P 𝐴 ) +P ( 𝑣 +P 𝐷 ) ) = ( 𝑤 +P ( 𝐴 +P ( 𝑣 +P 𝐷 ) ) ) | |
| 40 | 37 38 39 | 3eqtr4i | ⊢ ( ( 𝑤 +P 𝑣 ) +P ( 𝐴 +P 𝐷 ) ) = ( ( 𝑤 +P 𝐴 ) +P ( 𝑣 +P 𝐷 ) ) |
| 41 | 22 31 40 | 3eqtr4g | ⊢ ( ( ( 𝑧 +P 𝐵 ) = ( 𝑤 +P 𝐴 ) ∧ ( 𝑢 +P 𝐶 ) = ( 𝑣 +P 𝐷 ) ) → ( ( 𝑧 +P 𝑢 ) +P ( 𝐵 +P 𝐶 ) ) = ( ( 𝑤 +P 𝑣 ) +P ( 𝐴 +P 𝐷 ) ) ) |
| 42 | 21 41 | biimtrdi | ⊢ ( ( ( ( 𝑧 ∈ P ∧ 𝑤 ∈ P ) ∧ ( 𝐴 ∈ P ∧ 𝐵 ∈ P ) ) ∧ ( ( 𝑣 ∈ P ∧ 𝑢 ∈ P ) ∧ ( 𝐶 ∈ P ∧ 𝐷 ∈ P ) ) ) → ( ( [ 〈 𝑧 , 𝑤 〉 ] ~R = [ 〈 𝐴 , 𝐵 〉 ] ~R ∧ [ 〈 𝑣 , 𝑢 〉 ] ~R = [ 〈 𝐶 , 𝐷 〉 ] ~R ) → ( ( 𝑧 +P 𝑢 ) +P ( 𝐵 +P 𝐶 ) ) = ( ( 𝑤 +P 𝑣 ) +P ( 𝐴 +P 𝐷 ) ) ) ) |
| 43 | ovex | ⊢ ( 𝑧 +P 𝑢 ) ∈ V | |
| 44 | ovex | ⊢ ( 𝐵 +P 𝐶 ) ∈ V | |
| 45 | ltapr | ⊢ ( 𝑓 ∈ P → ( 𝑥 <P 𝑦 ↔ ( 𝑓 +P 𝑥 ) <P ( 𝑓 +P 𝑦 ) ) ) | |
| 46 | ovex | ⊢ ( 𝑤 +P 𝑣 ) ∈ V | |
| 47 | addcompr | ⊢ ( 𝑥 +P 𝑦 ) = ( 𝑦 +P 𝑥 ) | |
| 48 | ovex | ⊢ ( 𝐴 +P 𝐷 ) ∈ V | |
| 49 | 43 44 45 46 47 48 | caovord3 | ⊢ ( ( ( ( 𝐵 +P 𝐶 ) ∈ P ∧ ( 𝑤 +P 𝑣 ) ∈ P ) ∧ ( ( 𝑧 +P 𝑢 ) +P ( 𝐵 +P 𝐶 ) ) = ( ( 𝑤 +P 𝑣 ) +P ( 𝐴 +P 𝐷 ) ) ) → ( ( 𝑧 +P 𝑢 ) <P ( 𝑤 +P 𝑣 ) ↔ ( 𝐴 +P 𝐷 ) <P ( 𝐵 +P 𝐶 ) ) ) |
| 50 | 16 42 49 | syl6an | ⊢ ( ( ( ( 𝑧 ∈ P ∧ 𝑤 ∈ P ) ∧ ( 𝐴 ∈ P ∧ 𝐵 ∈ P ) ) ∧ ( ( 𝑣 ∈ P ∧ 𝑢 ∈ P ) ∧ ( 𝐶 ∈ P ∧ 𝐷 ∈ P ) ) ) → ( ( [ 〈 𝑧 , 𝑤 〉 ] ~R = [ 〈 𝐴 , 𝐵 〉 ] ~R ∧ [ 〈 𝑣 , 𝑢 〉 ] ~R = [ 〈 𝐶 , 𝐷 〉 ] ~R ) → ( ( 𝑧 +P 𝑢 ) <P ( 𝑤 +P 𝑣 ) ↔ ( 𝐴 +P 𝐷 ) <P ( 𝐵 +P 𝐶 ) ) ) ) |
| 51 | 9 1 4 10 50 | brecop | ⊢ ( ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ) ∧ ( 𝐶 ∈ P ∧ 𝐷 ∈ P ) ) → ( [ 〈 𝐴 , 𝐵 〉 ] ~R <R [ 〈 𝐶 , 𝐷 〉 ] ~R ↔ ( 𝐴 +P 𝐷 ) <P ( 𝐵 +P 𝐶 ) ) ) |
| 52 | 3 4 5 6 7 8 51 | brecop2 | ⊢ ( [ 〈 𝐴 , 𝐵 〉 ] ~R <R [ 〈 𝐶 , 𝐷 〉 ] ~R ↔ ( 𝐴 +P 𝐷 ) <P ( 𝐵 +P 𝐶 ) ) |