This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Ordering property of addition. Proposition 9-3.5(v) of Gleason p. 123. (Contributed by NM, 8-Apr-1996) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ltapr | ⊢ ( 𝐶 ∈ P → ( 𝐴 <P 𝐵 ↔ ( 𝐶 +P 𝐴 ) <P ( 𝐶 +P 𝐵 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dmplp | ⊢ dom +P = ( P × P ) | |
| 2 | ltrelpr | ⊢ <P ⊆ ( P × P ) | |
| 3 | 0npr | ⊢ ¬ ∅ ∈ P | |
| 4 | ltaprlem | ⊢ ( 𝐶 ∈ P → ( 𝐴 <P 𝐵 → ( 𝐶 +P 𝐴 ) <P ( 𝐶 +P 𝐵 ) ) ) | |
| 5 | 4 | adantr | ⊢ ( ( 𝐶 ∈ P ∧ ( 𝐵 ∈ P ∧ 𝐴 ∈ P ) ) → ( 𝐴 <P 𝐵 → ( 𝐶 +P 𝐴 ) <P ( 𝐶 +P 𝐵 ) ) ) |
| 6 | olc | ⊢ ( ( 𝐶 +P 𝐴 ) <P ( 𝐶 +P 𝐵 ) → ( ( 𝐶 +P 𝐵 ) = ( 𝐶 +P 𝐴 ) ∨ ( 𝐶 +P 𝐴 ) <P ( 𝐶 +P 𝐵 ) ) ) | |
| 7 | ltaprlem | ⊢ ( 𝐶 ∈ P → ( 𝐵 <P 𝐴 → ( 𝐶 +P 𝐵 ) <P ( 𝐶 +P 𝐴 ) ) ) | |
| 8 | 7 | adantr | ⊢ ( ( 𝐶 ∈ P ∧ ( 𝐵 ∈ P ∧ 𝐴 ∈ P ) ) → ( 𝐵 <P 𝐴 → ( 𝐶 +P 𝐵 ) <P ( 𝐶 +P 𝐴 ) ) ) |
| 9 | ltsopr | ⊢ <P Or P | |
| 10 | sotric | ⊢ ( ( <P Or P ∧ ( 𝐵 ∈ P ∧ 𝐴 ∈ P ) ) → ( 𝐵 <P 𝐴 ↔ ¬ ( 𝐵 = 𝐴 ∨ 𝐴 <P 𝐵 ) ) ) | |
| 11 | 9 10 | mpan | ⊢ ( ( 𝐵 ∈ P ∧ 𝐴 ∈ P ) → ( 𝐵 <P 𝐴 ↔ ¬ ( 𝐵 = 𝐴 ∨ 𝐴 <P 𝐵 ) ) ) |
| 12 | 11 | adantl | ⊢ ( ( 𝐶 ∈ P ∧ ( 𝐵 ∈ P ∧ 𝐴 ∈ P ) ) → ( 𝐵 <P 𝐴 ↔ ¬ ( 𝐵 = 𝐴 ∨ 𝐴 <P 𝐵 ) ) ) |
| 13 | addclpr | ⊢ ( ( 𝐶 ∈ P ∧ 𝐵 ∈ P ) → ( 𝐶 +P 𝐵 ) ∈ P ) | |
| 14 | addclpr | ⊢ ( ( 𝐶 ∈ P ∧ 𝐴 ∈ P ) → ( 𝐶 +P 𝐴 ) ∈ P ) | |
| 15 | 13 14 | anim12dan | ⊢ ( ( 𝐶 ∈ P ∧ ( 𝐵 ∈ P ∧ 𝐴 ∈ P ) ) → ( ( 𝐶 +P 𝐵 ) ∈ P ∧ ( 𝐶 +P 𝐴 ) ∈ P ) ) |
| 16 | sotric | ⊢ ( ( <P Or P ∧ ( ( 𝐶 +P 𝐵 ) ∈ P ∧ ( 𝐶 +P 𝐴 ) ∈ P ) ) → ( ( 𝐶 +P 𝐵 ) <P ( 𝐶 +P 𝐴 ) ↔ ¬ ( ( 𝐶 +P 𝐵 ) = ( 𝐶 +P 𝐴 ) ∨ ( 𝐶 +P 𝐴 ) <P ( 𝐶 +P 𝐵 ) ) ) ) | |
| 17 | 9 15 16 | sylancr | ⊢ ( ( 𝐶 ∈ P ∧ ( 𝐵 ∈ P ∧ 𝐴 ∈ P ) ) → ( ( 𝐶 +P 𝐵 ) <P ( 𝐶 +P 𝐴 ) ↔ ¬ ( ( 𝐶 +P 𝐵 ) = ( 𝐶 +P 𝐴 ) ∨ ( 𝐶 +P 𝐴 ) <P ( 𝐶 +P 𝐵 ) ) ) ) |
| 18 | 8 12 17 | 3imtr3d | ⊢ ( ( 𝐶 ∈ P ∧ ( 𝐵 ∈ P ∧ 𝐴 ∈ P ) ) → ( ¬ ( 𝐵 = 𝐴 ∨ 𝐴 <P 𝐵 ) → ¬ ( ( 𝐶 +P 𝐵 ) = ( 𝐶 +P 𝐴 ) ∨ ( 𝐶 +P 𝐴 ) <P ( 𝐶 +P 𝐵 ) ) ) ) |
| 19 | 18 | con4d | ⊢ ( ( 𝐶 ∈ P ∧ ( 𝐵 ∈ P ∧ 𝐴 ∈ P ) ) → ( ( ( 𝐶 +P 𝐵 ) = ( 𝐶 +P 𝐴 ) ∨ ( 𝐶 +P 𝐴 ) <P ( 𝐶 +P 𝐵 ) ) → ( 𝐵 = 𝐴 ∨ 𝐴 <P 𝐵 ) ) ) |
| 20 | 6 19 | syl5 | ⊢ ( ( 𝐶 ∈ P ∧ ( 𝐵 ∈ P ∧ 𝐴 ∈ P ) ) → ( ( 𝐶 +P 𝐴 ) <P ( 𝐶 +P 𝐵 ) → ( 𝐵 = 𝐴 ∨ 𝐴 <P 𝐵 ) ) ) |
| 21 | df-or | ⊢ ( ( 𝐵 = 𝐴 ∨ 𝐴 <P 𝐵 ) ↔ ( ¬ 𝐵 = 𝐴 → 𝐴 <P 𝐵 ) ) | |
| 22 | 20 21 | imbitrdi | ⊢ ( ( 𝐶 ∈ P ∧ ( 𝐵 ∈ P ∧ 𝐴 ∈ P ) ) → ( ( 𝐶 +P 𝐴 ) <P ( 𝐶 +P 𝐵 ) → ( ¬ 𝐵 = 𝐴 → 𝐴 <P 𝐵 ) ) ) |
| 23 | 22 | com23 | ⊢ ( ( 𝐶 ∈ P ∧ ( 𝐵 ∈ P ∧ 𝐴 ∈ P ) ) → ( ¬ 𝐵 = 𝐴 → ( ( 𝐶 +P 𝐴 ) <P ( 𝐶 +P 𝐵 ) → 𝐴 <P 𝐵 ) ) ) |
| 24 | 9 2 | soirri | ⊢ ¬ ( 𝐶 +P 𝐴 ) <P ( 𝐶 +P 𝐴 ) |
| 25 | oveq2 | ⊢ ( 𝐵 = 𝐴 → ( 𝐶 +P 𝐵 ) = ( 𝐶 +P 𝐴 ) ) | |
| 26 | 25 | breq2d | ⊢ ( 𝐵 = 𝐴 → ( ( 𝐶 +P 𝐴 ) <P ( 𝐶 +P 𝐵 ) ↔ ( 𝐶 +P 𝐴 ) <P ( 𝐶 +P 𝐴 ) ) ) |
| 27 | 24 26 | mtbiri | ⊢ ( 𝐵 = 𝐴 → ¬ ( 𝐶 +P 𝐴 ) <P ( 𝐶 +P 𝐵 ) ) |
| 28 | 27 | pm2.21d | ⊢ ( 𝐵 = 𝐴 → ( ( 𝐶 +P 𝐴 ) <P ( 𝐶 +P 𝐵 ) → 𝐴 <P 𝐵 ) ) |
| 29 | 23 28 | pm2.61d2 | ⊢ ( ( 𝐶 ∈ P ∧ ( 𝐵 ∈ P ∧ 𝐴 ∈ P ) ) → ( ( 𝐶 +P 𝐴 ) <P ( 𝐶 +P 𝐵 ) → 𝐴 <P 𝐵 ) ) |
| 30 | 5 29 | impbid | ⊢ ( ( 𝐶 ∈ P ∧ ( 𝐵 ∈ P ∧ 𝐴 ∈ P ) ) → ( 𝐴 <P 𝐵 ↔ ( 𝐶 +P 𝐴 ) <P ( 𝐶 +P 𝐵 ) ) ) |
| 31 | 30 | 3impb | ⊢ ( ( 𝐶 ∈ P ∧ 𝐵 ∈ P ∧ 𝐴 ∈ P ) → ( 𝐴 <P 𝐵 ↔ ( 𝐶 +P 𝐴 ) <P ( 𝐶 +P 𝐵 ) ) ) |
| 32 | 31 | 3com13 | ⊢ ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ P ) → ( 𝐴 <P 𝐵 ↔ ( 𝐶 +P 𝐴 ) <P ( 𝐶 +P 𝐵 ) ) ) |
| 33 | 1 2 3 32 | ndmovord | ⊢ ( 𝐶 ∈ P → ( 𝐴 <P 𝐵 ↔ ( 𝐶 +P 𝐴 ) <P ( 𝐶 +P 𝐵 ) ) ) |