This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Binary relation on a quotient set. Lemma for real number construction. Eliminates antecedent from last hypothesis. (Contributed by NM, 13-Feb-1996) (Revised by AV, 12-Jul-2022)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | brecop2.1 | ⊢ dom ∼ = ( 𝐺 × 𝐺 ) | |
| brecop2.2 | ⊢ 𝐻 = ( ( 𝐺 × 𝐺 ) / ∼ ) | ||
| brecop2.3 | ⊢ 𝑅 ⊆ ( 𝐻 × 𝐻 ) | ||
| brecop2.4 | ⊢ ≤ ⊆ ( 𝐺 × 𝐺 ) | ||
| brecop2.5 | ⊢ ¬ ∅ ∈ 𝐺 | ||
| brecop2.6 | ⊢ dom + = ( 𝐺 × 𝐺 ) | ||
| brecop2.7 | ⊢ ( ( ( 𝐴 ∈ 𝐺 ∧ 𝐵 ∈ 𝐺 ) ∧ ( 𝐶 ∈ 𝐺 ∧ 𝐷 ∈ 𝐺 ) ) → ( [ 〈 𝐴 , 𝐵 〉 ] ∼ 𝑅 [ 〈 𝐶 , 𝐷 〉 ] ∼ ↔ ( 𝐴 + 𝐷 ) ≤ ( 𝐵 + 𝐶 ) ) ) | ||
| Assertion | brecop2 | ⊢ ( [ 〈 𝐴 , 𝐵 〉 ] ∼ 𝑅 [ 〈 𝐶 , 𝐷 〉 ] ∼ ↔ ( 𝐴 + 𝐷 ) ≤ ( 𝐵 + 𝐶 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | brecop2.1 | ⊢ dom ∼ = ( 𝐺 × 𝐺 ) | |
| 2 | brecop2.2 | ⊢ 𝐻 = ( ( 𝐺 × 𝐺 ) / ∼ ) | |
| 3 | brecop2.3 | ⊢ 𝑅 ⊆ ( 𝐻 × 𝐻 ) | |
| 4 | brecop2.4 | ⊢ ≤ ⊆ ( 𝐺 × 𝐺 ) | |
| 5 | brecop2.5 | ⊢ ¬ ∅ ∈ 𝐺 | |
| 6 | brecop2.6 | ⊢ dom + = ( 𝐺 × 𝐺 ) | |
| 7 | brecop2.7 | ⊢ ( ( ( 𝐴 ∈ 𝐺 ∧ 𝐵 ∈ 𝐺 ) ∧ ( 𝐶 ∈ 𝐺 ∧ 𝐷 ∈ 𝐺 ) ) → ( [ 〈 𝐴 , 𝐵 〉 ] ∼ 𝑅 [ 〈 𝐶 , 𝐷 〉 ] ∼ ↔ ( 𝐴 + 𝐷 ) ≤ ( 𝐵 + 𝐶 ) ) ) | |
| 8 | 3 | brel | ⊢ ( [ 〈 𝐴 , 𝐵 〉 ] ∼ 𝑅 [ 〈 𝐶 , 𝐷 〉 ] ∼ → ( [ 〈 𝐴 , 𝐵 〉 ] ∼ ∈ 𝐻 ∧ [ 〈 𝐶 , 𝐷 〉 ] ∼ ∈ 𝐻 ) ) |
| 9 | ecelqsdm | ⊢ ( ( dom ∼ = ( 𝐺 × 𝐺 ) ∧ [ 〈 𝐴 , 𝐵 〉 ] ∼ ∈ ( ( 𝐺 × 𝐺 ) / ∼ ) ) → 〈 𝐴 , 𝐵 〉 ∈ ( 𝐺 × 𝐺 ) ) | |
| 10 | 1 9 | mpan | ⊢ ( [ 〈 𝐴 , 𝐵 〉 ] ∼ ∈ ( ( 𝐺 × 𝐺 ) / ∼ ) → 〈 𝐴 , 𝐵 〉 ∈ ( 𝐺 × 𝐺 ) ) |
| 11 | 10 2 | eleq2s | ⊢ ( [ 〈 𝐴 , 𝐵 〉 ] ∼ ∈ 𝐻 → 〈 𝐴 , 𝐵 〉 ∈ ( 𝐺 × 𝐺 ) ) |
| 12 | opelxp | ⊢ ( 〈 𝐴 , 𝐵 〉 ∈ ( 𝐺 × 𝐺 ) ↔ ( 𝐴 ∈ 𝐺 ∧ 𝐵 ∈ 𝐺 ) ) | |
| 13 | 11 12 | sylib | ⊢ ( [ 〈 𝐴 , 𝐵 〉 ] ∼ ∈ 𝐻 → ( 𝐴 ∈ 𝐺 ∧ 𝐵 ∈ 𝐺 ) ) |
| 14 | ecelqsdm | ⊢ ( ( dom ∼ = ( 𝐺 × 𝐺 ) ∧ [ 〈 𝐶 , 𝐷 〉 ] ∼ ∈ ( ( 𝐺 × 𝐺 ) / ∼ ) ) → 〈 𝐶 , 𝐷 〉 ∈ ( 𝐺 × 𝐺 ) ) | |
| 15 | 1 14 | mpan | ⊢ ( [ 〈 𝐶 , 𝐷 〉 ] ∼ ∈ ( ( 𝐺 × 𝐺 ) / ∼ ) → 〈 𝐶 , 𝐷 〉 ∈ ( 𝐺 × 𝐺 ) ) |
| 16 | 15 2 | eleq2s | ⊢ ( [ 〈 𝐶 , 𝐷 〉 ] ∼ ∈ 𝐻 → 〈 𝐶 , 𝐷 〉 ∈ ( 𝐺 × 𝐺 ) ) |
| 17 | opelxp | ⊢ ( 〈 𝐶 , 𝐷 〉 ∈ ( 𝐺 × 𝐺 ) ↔ ( 𝐶 ∈ 𝐺 ∧ 𝐷 ∈ 𝐺 ) ) | |
| 18 | 16 17 | sylib | ⊢ ( [ 〈 𝐶 , 𝐷 〉 ] ∼ ∈ 𝐻 → ( 𝐶 ∈ 𝐺 ∧ 𝐷 ∈ 𝐺 ) ) |
| 19 | 13 18 | anim12i | ⊢ ( ( [ 〈 𝐴 , 𝐵 〉 ] ∼ ∈ 𝐻 ∧ [ 〈 𝐶 , 𝐷 〉 ] ∼ ∈ 𝐻 ) → ( ( 𝐴 ∈ 𝐺 ∧ 𝐵 ∈ 𝐺 ) ∧ ( 𝐶 ∈ 𝐺 ∧ 𝐷 ∈ 𝐺 ) ) ) |
| 20 | 8 19 | syl | ⊢ ( [ 〈 𝐴 , 𝐵 〉 ] ∼ 𝑅 [ 〈 𝐶 , 𝐷 〉 ] ∼ → ( ( 𝐴 ∈ 𝐺 ∧ 𝐵 ∈ 𝐺 ) ∧ ( 𝐶 ∈ 𝐺 ∧ 𝐷 ∈ 𝐺 ) ) ) |
| 21 | 4 | brel | ⊢ ( ( 𝐴 + 𝐷 ) ≤ ( 𝐵 + 𝐶 ) → ( ( 𝐴 + 𝐷 ) ∈ 𝐺 ∧ ( 𝐵 + 𝐶 ) ∈ 𝐺 ) ) |
| 22 | 6 5 | ndmovrcl | ⊢ ( ( 𝐴 + 𝐷 ) ∈ 𝐺 → ( 𝐴 ∈ 𝐺 ∧ 𝐷 ∈ 𝐺 ) ) |
| 23 | 6 5 | ndmovrcl | ⊢ ( ( 𝐵 + 𝐶 ) ∈ 𝐺 → ( 𝐵 ∈ 𝐺 ∧ 𝐶 ∈ 𝐺 ) ) |
| 24 | 22 23 | anim12i | ⊢ ( ( ( 𝐴 + 𝐷 ) ∈ 𝐺 ∧ ( 𝐵 + 𝐶 ) ∈ 𝐺 ) → ( ( 𝐴 ∈ 𝐺 ∧ 𝐷 ∈ 𝐺 ) ∧ ( 𝐵 ∈ 𝐺 ∧ 𝐶 ∈ 𝐺 ) ) ) |
| 25 | 21 24 | syl | ⊢ ( ( 𝐴 + 𝐷 ) ≤ ( 𝐵 + 𝐶 ) → ( ( 𝐴 ∈ 𝐺 ∧ 𝐷 ∈ 𝐺 ) ∧ ( 𝐵 ∈ 𝐺 ∧ 𝐶 ∈ 𝐺 ) ) ) |
| 26 | an42 | ⊢ ( ( ( 𝐴 ∈ 𝐺 ∧ 𝐷 ∈ 𝐺 ) ∧ ( 𝐵 ∈ 𝐺 ∧ 𝐶 ∈ 𝐺 ) ) ↔ ( ( 𝐴 ∈ 𝐺 ∧ 𝐵 ∈ 𝐺 ) ∧ ( 𝐶 ∈ 𝐺 ∧ 𝐷 ∈ 𝐺 ) ) ) | |
| 27 | 25 26 | sylib | ⊢ ( ( 𝐴 + 𝐷 ) ≤ ( 𝐵 + 𝐶 ) → ( ( 𝐴 ∈ 𝐺 ∧ 𝐵 ∈ 𝐺 ) ∧ ( 𝐶 ∈ 𝐺 ∧ 𝐷 ∈ 𝐺 ) ) ) |
| 28 | 20 27 7 | pm5.21nii | ⊢ ( [ 〈 𝐴 , 𝐵 〉 ] ∼ 𝑅 [ 〈 𝐶 , 𝐷 〉 ] ∼ ↔ ( 𝐴 + 𝐷 ) ≤ ( 𝐵 + 𝐶 ) ) |