This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Ordering law. (Contributed by NM, 29-Feb-1996)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | caovord.1 | ⊢ 𝐴 ∈ V | |
| caovord.2 | ⊢ 𝐵 ∈ V | ||
| caovord.3 | ⊢ ( 𝑧 ∈ 𝑆 → ( 𝑥 𝑅 𝑦 ↔ ( 𝑧 𝐹 𝑥 ) 𝑅 ( 𝑧 𝐹 𝑦 ) ) ) | ||
| caovord2.3 | ⊢ 𝐶 ∈ V | ||
| caovord2.com | ⊢ ( 𝑥 𝐹 𝑦 ) = ( 𝑦 𝐹 𝑥 ) | ||
| caovord3.4 | ⊢ 𝐷 ∈ V | ||
| Assertion | caovord3 | ⊢ ( ( ( 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆 ) ∧ ( 𝐴 𝐹 𝐵 ) = ( 𝐶 𝐹 𝐷 ) ) → ( 𝐴 𝑅 𝐶 ↔ 𝐷 𝑅 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | caovord.1 | ⊢ 𝐴 ∈ V | |
| 2 | caovord.2 | ⊢ 𝐵 ∈ V | |
| 3 | caovord.3 | ⊢ ( 𝑧 ∈ 𝑆 → ( 𝑥 𝑅 𝑦 ↔ ( 𝑧 𝐹 𝑥 ) 𝑅 ( 𝑧 𝐹 𝑦 ) ) ) | |
| 4 | caovord2.3 | ⊢ 𝐶 ∈ V | |
| 5 | caovord2.com | ⊢ ( 𝑥 𝐹 𝑦 ) = ( 𝑦 𝐹 𝑥 ) | |
| 6 | caovord3.4 | ⊢ 𝐷 ∈ V | |
| 7 | 1 4 3 2 5 | caovord2 | ⊢ ( 𝐵 ∈ 𝑆 → ( 𝐴 𝑅 𝐶 ↔ ( 𝐴 𝐹 𝐵 ) 𝑅 ( 𝐶 𝐹 𝐵 ) ) ) |
| 8 | 7 | adantr | ⊢ ( ( 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆 ) → ( 𝐴 𝑅 𝐶 ↔ ( 𝐴 𝐹 𝐵 ) 𝑅 ( 𝐶 𝐹 𝐵 ) ) ) |
| 9 | breq1 | ⊢ ( ( 𝐴 𝐹 𝐵 ) = ( 𝐶 𝐹 𝐷 ) → ( ( 𝐴 𝐹 𝐵 ) 𝑅 ( 𝐶 𝐹 𝐵 ) ↔ ( 𝐶 𝐹 𝐷 ) 𝑅 ( 𝐶 𝐹 𝐵 ) ) ) | |
| 10 | 8 9 | sylan9bb | ⊢ ( ( ( 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆 ) ∧ ( 𝐴 𝐹 𝐵 ) = ( 𝐶 𝐹 𝐷 ) ) → ( 𝐴 𝑅 𝐶 ↔ ( 𝐶 𝐹 𝐷 ) 𝑅 ( 𝐶 𝐹 𝐵 ) ) ) |
| 11 | 6 2 3 | caovord | ⊢ ( 𝐶 ∈ 𝑆 → ( 𝐷 𝑅 𝐵 ↔ ( 𝐶 𝐹 𝐷 ) 𝑅 ( 𝐶 𝐹 𝐵 ) ) ) |
| 12 | 11 | ad2antlr | ⊢ ( ( ( 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆 ) ∧ ( 𝐴 𝐹 𝐵 ) = ( 𝐶 𝐹 𝐷 ) ) → ( 𝐷 𝑅 𝐵 ↔ ( 𝐶 𝐹 𝐷 ) 𝑅 ( 𝐶 𝐹 𝐵 ) ) ) |
| 13 | 10 12 | bitr4d | ⊢ ( ( ( 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆 ) ∧ ( 𝐴 𝐹 𝐵 ) = ( 𝐶 𝐹 𝐷 ) ) → ( 𝐴 𝑅 𝐶 ↔ 𝐷 𝑅 𝐵 ) ) |