This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for Proposition 9-3.5(iv) of Gleason p. 123. (Contributed by NM, 6-Apr-1996) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | ltexprlem.1 | ⊢ 𝐶 = { 𝑥 ∣ ∃ 𝑦 ( ¬ 𝑦 ∈ 𝐴 ∧ ( 𝑦 +Q 𝑥 ) ∈ 𝐵 ) } | |
| Assertion | ltexprlem4 | ⊢ ( 𝐵 ∈ P → ( 𝑥 ∈ 𝐶 → ∃ 𝑧 ( 𝑧 ∈ 𝐶 ∧ 𝑥 <Q 𝑧 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ltexprlem.1 | ⊢ 𝐶 = { 𝑥 ∣ ∃ 𝑦 ( ¬ 𝑦 ∈ 𝐴 ∧ ( 𝑦 +Q 𝑥 ) ∈ 𝐵 ) } | |
| 2 | prnmax | ⊢ ( ( 𝐵 ∈ P ∧ ( 𝑦 +Q 𝑥 ) ∈ 𝐵 ) → ∃ 𝑤 ∈ 𝐵 ( 𝑦 +Q 𝑥 ) <Q 𝑤 ) | |
| 3 | df-rex | ⊢ ( ∃ 𝑤 ∈ 𝐵 ( 𝑦 +Q 𝑥 ) <Q 𝑤 ↔ ∃ 𝑤 ( 𝑤 ∈ 𝐵 ∧ ( 𝑦 +Q 𝑥 ) <Q 𝑤 ) ) | |
| 4 | 2 3 | sylib | ⊢ ( ( 𝐵 ∈ P ∧ ( 𝑦 +Q 𝑥 ) ∈ 𝐵 ) → ∃ 𝑤 ( 𝑤 ∈ 𝐵 ∧ ( 𝑦 +Q 𝑥 ) <Q 𝑤 ) ) |
| 5 | ltrelnq | ⊢ <Q ⊆ ( Q × Q ) | |
| 6 | 5 | brel | ⊢ ( ( 𝑦 +Q 𝑥 ) <Q 𝑤 → ( ( 𝑦 +Q 𝑥 ) ∈ Q ∧ 𝑤 ∈ Q ) ) |
| 7 | 6 | simpld | ⊢ ( ( 𝑦 +Q 𝑥 ) <Q 𝑤 → ( 𝑦 +Q 𝑥 ) ∈ Q ) |
| 8 | addnqf | ⊢ +Q : ( Q × Q ) ⟶ Q | |
| 9 | 8 | fdmi | ⊢ dom +Q = ( Q × Q ) |
| 10 | 0nnq | ⊢ ¬ ∅ ∈ Q | |
| 11 | 9 10 | ndmovrcl | ⊢ ( ( 𝑦 +Q 𝑥 ) ∈ Q → ( 𝑦 ∈ Q ∧ 𝑥 ∈ Q ) ) |
| 12 | 7 11 | syl | ⊢ ( ( 𝑦 +Q 𝑥 ) <Q 𝑤 → ( 𝑦 ∈ Q ∧ 𝑥 ∈ Q ) ) |
| 13 | ltaddnq | ⊢ ( ( 𝑦 ∈ Q ∧ 𝑥 ∈ Q ) → 𝑦 <Q ( 𝑦 +Q 𝑥 ) ) | |
| 14 | ltsonq | ⊢ <Q Or Q | |
| 15 | 14 5 | sotri | ⊢ ( ( 𝑦 <Q ( 𝑦 +Q 𝑥 ) ∧ ( 𝑦 +Q 𝑥 ) <Q 𝑤 ) → 𝑦 <Q 𝑤 ) |
| 16 | 13 15 | sylan | ⊢ ( ( ( 𝑦 ∈ Q ∧ 𝑥 ∈ Q ) ∧ ( 𝑦 +Q 𝑥 ) <Q 𝑤 ) → 𝑦 <Q 𝑤 ) |
| 17 | 12 16 | mpancom | ⊢ ( ( 𝑦 +Q 𝑥 ) <Q 𝑤 → 𝑦 <Q 𝑤 ) |
| 18 | 5 | brel | ⊢ ( 𝑦 <Q 𝑤 → ( 𝑦 ∈ Q ∧ 𝑤 ∈ Q ) ) |
| 19 | 18 | simprd | ⊢ ( 𝑦 <Q 𝑤 → 𝑤 ∈ Q ) |
| 20 | ltexnq | ⊢ ( 𝑤 ∈ Q → ( 𝑦 <Q 𝑤 ↔ ∃ 𝑧 ( 𝑦 +Q 𝑧 ) = 𝑤 ) ) | |
| 21 | 20 | biimpd | ⊢ ( 𝑤 ∈ Q → ( 𝑦 <Q 𝑤 → ∃ 𝑧 ( 𝑦 +Q 𝑧 ) = 𝑤 ) ) |
| 22 | 19 21 | mpcom | ⊢ ( 𝑦 <Q 𝑤 → ∃ 𝑧 ( 𝑦 +Q 𝑧 ) = 𝑤 ) |
| 23 | 17 22 | syl | ⊢ ( ( 𝑦 +Q 𝑥 ) <Q 𝑤 → ∃ 𝑧 ( 𝑦 +Q 𝑧 ) = 𝑤 ) |
| 24 | eqcom | ⊢ ( 𝑤 = ( 𝑦 +Q 𝑧 ) ↔ ( 𝑦 +Q 𝑧 ) = 𝑤 ) | |
| 25 | 24 | exbii | ⊢ ( ∃ 𝑧 𝑤 = ( 𝑦 +Q 𝑧 ) ↔ ∃ 𝑧 ( 𝑦 +Q 𝑧 ) = 𝑤 ) |
| 26 | 23 25 | sylibr | ⊢ ( ( 𝑦 +Q 𝑥 ) <Q 𝑤 → ∃ 𝑧 𝑤 = ( 𝑦 +Q 𝑧 ) ) |
| 27 | 26 | ancri | ⊢ ( ( 𝑦 +Q 𝑥 ) <Q 𝑤 → ( ∃ 𝑧 𝑤 = ( 𝑦 +Q 𝑧 ) ∧ ( 𝑦 +Q 𝑥 ) <Q 𝑤 ) ) |
| 28 | 27 | anim2i | ⊢ ( ( 𝑤 ∈ 𝐵 ∧ ( 𝑦 +Q 𝑥 ) <Q 𝑤 ) → ( 𝑤 ∈ 𝐵 ∧ ( ∃ 𝑧 𝑤 = ( 𝑦 +Q 𝑧 ) ∧ ( 𝑦 +Q 𝑥 ) <Q 𝑤 ) ) ) |
| 29 | an12 | ⊢ ( ( ∃ 𝑧 𝑤 = ( 𝑦 +Q 𝑧 ) ∧ ( 𝑤 ∈ 𝐵 ∧ ( 𝑦 +Q 𝑥 ) <Q 𝑤 ) ) ↔ ( 𝑤 ∈ 𝐵 ∧ ( ∃ 𝑧 𝑤 = ( 𝑦 +Q 𝑧 ) ∧ ( 𝑦 +Q 𝑥 ) <Q 𝑤 ) ) ) | |
| 30 | 28 29 | sylibr | ⊢ ( ( 𝑤 ∈ 𝐵 ∧ ( 𝑦 +Q 𝑥 ) <Q 𝑤 ) → ( ∃ 𝑧 𝑤 = ( 𝑦 +Q 𝑧 ) ∧ ( 𝑤 ∈ 𝐵 ∧ ( 𝑦 +Q 𝑥 ) <Q 𝑤 ) ) ) |
| 31 | 19.41v | ⊢ ( ∃ 𝑧 ( 𝑤 = ( 𝑦 +Q 𝑧 ) ∧ ( 𝑤 ∈ 𝐵 ∧ ( 𝑦 +Q 𝑥 ) <Q 𝑤 ) ) ↔ ( ∃ 𝑧 𝑤 = ( 𝑦 +Q 𝑧 ) ∧ ( 𝑤 ∈ 𝐵 ∧ ( 𝑦 +Q 𝑥 ) <Q 𝑤 ) ) ) | |
| 32 | 30 31 | sylibr | ⊢ ( ( 𝑤 ∈ 𝐵 ∧ ( 𝑦 +Q 𝑥 ) <Q 𝑤 ) → ∃ 𝑧 ( 𝑤 = ( 𝑦 +Q 𝑧 ) ∧ ( 𝑤 ∈ 𝐵 ∧ ( 𝑦 +Q 𝑥 ) <Q 𝑤 ) ) ) |
| 33 | 32 | eximi | ⊢ ( ∃ 𝑤 ( 𝑤 ∈ 𝐵 ∧ ( 𝑦 +Q 𝑥 ) <Q 𝑤 ) → ∃ 𝑤 ∃ 𝑧 ( 𝑤 = ( 𝑦 +Q 𝑧 ) ∧ ( 𝑤 ∈ 𝐵 ∧ ( 𝑦 +Q 𝑥 ) <Q 𝑤 ) ) ) |
| 34 | excom | ⊢ ( ∃ 𝑧 ∃ 𝑤 ( 𝑤 = ( 𝑦 +Q 𝑧 ) ∧ ( 𝑤 ∈ 𝐵 ∧ ( 𝑦 +Q 𝑥 ) <Q 𝑤 ) ) ↔ ∃ 𝑤 ∃ 𝑧 ( 𝑤 = ( 𝑦 +Q 𝑧 ) ∧ ( 𝑤 ∈ 𝐵 ∧ ( 𝑦 +Q 𝑥 ) <Q 𝑤 ) ) ) | |
| 35 | 33 34 | sylibr | ⊢ ( ∃ 𝑤 ( 𝑤 ∈ 𝐵 ∧ ( 𝑦 +Q 𝑥 ) <Q 𝑤 ) → ∃ 𝑧 ∃ 𝑤 ( 𝑤 = ( 𝑦 +Q 𝑧 ) ∧ ( 𝑤 ∈ 𝐵 ∧ ( 𝑦 +Q 𝑥 ) <Q 𝑤 ) ) ) |
| 36 | ovex | ⊢ ( 𝑦 +Q 𝑧 ) ∈ V | |
| 37 | eleq1 | ⊢ ( 𝑤 = ( 𝑦 +Q 𝑧 ) → ( 𝑤 ∈ 𝐵 ↔ ( 𝑦 +Q 𝑧 ) ∈ 𝐵 ) ) | |
| 38 | breq2 | ⊢ ( 𝑤 = ( 𝑦 +Q 𝑧 ) → ( ( 𝑦 +Q 𝑥 ) <Q 𝑤 ↔ ( 𝑦 +Q 𝑥 ) <Q ( 𝑦 +Q 𝑧 ) ) ) | |
| 39 | 37 38 | anbi12d | ⊢ ( 𝑤 = ( 𝑦 +Q 𝑧 ) → ( ( 𝑤 ∈ 𝐵 ∧ ( 𝑦 +Q 𝑥 ) <Q 𝑤 ) ↔ ( ( 𝑦 +Q 𝑧 ) ∈ 𝐵 ∧ ( 𝑦 +Q 𝑥 ) <Q ( 𝑦 +Q 𝑧 ) ) ) ) |
| 40 | 36 39 | ceqsexv | ⊢ ( ∃ 𝑤 ( 𝑤 = ( 𝑦 +Q 𝑧 ) ∧ ( 𝑤 ∈ 𝐵 ∧ ( 𝑦 +Q 𝑥 ) <Q 𝑤 ) ) ↔ ( ( 𝑦 +Q 𝑧 ) ∈ 𝐵 ∧ ( 𝑦 +Q 𝑥 ) <Q ( 𝑦 +Q 𝑧 ) ) ) |
| 41 | ltanq | ⊢ ( 𝑦 ∈ Q → ( 𝑥 <Q 𝑧 ↔ ( 𝑦 +Q 𝑥 ) <Q ( 𝑦 +Q 𝑧 ) ) ) | |
| 42 | 9 5 10 41 | ndmovordi | ⊢ ( ( 𝑦 +Q 𝑥 ) <Q ( 𝑦 +Q 𝑧 ) → 𝑥 <Q 𝑧 ) |
| 43 | 42 | anim2i | ⊢ ( ( ( 𝑦 +Q 𝑧 ) ∈ 𝐵 ∧ ( 𝑦 +Q 𝑥 ) <Q ( 𝑦 +Q 𝑧 ) ) → ( ( 𝑦 +Q 𝑧 ) ∈ 𝐵 ∧ 𝑥 <Q 𝑧 ) ) |
| 44 | 40 43 | sylbi | ⊢ ( ∃ 𝑤 ( 𝑤 = ( 𝑦 +Q 𝑧 ) ∧ ( 𝑤 ∈ 𝐵 ∧ ( 𝑦 +Q 𝑥 ) <Q 𝑤 ) ) → ( ( 𝑦 +Q 𝑧 ) ∈ 𝐵 ∧ 𝑥 <Q 𝑧 ) ) |
| 45 | 44 | eximi | ⊢ ( ∃ 𝑧 ∃ 𝑤 ( 𝑤 = ( 𝑦 +Q 𝑧 ) ∧ ( 𝑤 ∈ 𝐵 ∧ ( 𝑦 +Q 𝑥 ) <Q 𝑤 ) ) → ∃ 𝑧 ( ( 𝑦 +Q 𝑧 ) ∈ 𝐵 ∧ 𝑥 <Q 𝑧 ) ) |
| 46 | 4 35 45 | 3syl | ⊢ ( ( 𝐵 ∈ P ∧ ( 𝑦 +Q 𝑥 ) ∈ 𝐵 ) → ∃ 𝑧 ( ( 𝑦 +Q 𝑧 ) ∈ 𝐵 ∧ 𝑥 <Q 𝑧 ) ) |
| 47 | 46 | anim2i | ⊢ ( ( ¬ 𝑦 ∈ 𝐴 ∧ ( 𝐵 ∈ P ∧ ( 𝑦 +Q 𝑥 ) ∈ 𝐵 ) ) → ( ¬ 𝑦 ∈ 𝐴 ∧ ∃ 𝑧 ( ( 𝑦 +Q 𝑧 ) ∈ 𝐵 ∧ 𝑥 <Q 𝑧 ) ) ) |
| 48 | 47 | an12s | ⊢ ( ( 𝐵 ∈ P ∧ ( ¬ 𝑦 ∈ 𝐴 ∧ ( 𝑦 +Q 𝑥 ) ∈ 𝐵 ) ) → ( ¬ 𝑦 ∈ 𝐴 ∧ ∃ 𝑧 ( ( 𝑦 +Q 𝑧 ) ∈ 𝐵 ∧ 𝑥 <Q 𝑧 ) ) ) |
| 49 | 19.42v | ⊢ ( ∃ 𝑧 ( ¬ 𝑦 ∈ 𝐴 ∧ ( ( 𝑦 +Q 𝑧 ) ∈ 𝐵 ∧ 𝑥 <Q 𝑧 ) ) ↔ ( ¬ 𝑦 ∈ 𝐴 ∧ ∃ 𝑧 ( ( 𝑦 +Q 𝑧 ) ∈ 𝐵 ∧ 𝑥 <Q 𝑧 ) ) ) | |
| 50 | 48 49 | sylibr | ⊢ ( ( 𝐵 ∈ P ∧ ( ¬ 𝑦 ∈ 𝐴 ∧ ( 𝑦 +Q 𝑥 ) ∈ 𝐵 ) ) → ∃ 𝑧 ( ¬ 𝑦 ∈ 𝐴 ∧ ( ( 𝑦 +Q 𝑧 ) ∈ 𝐵 ∧ 𝑥 <Q 𝑧 ) ) ) |
| 51 | 50 | ex | ⊢ ( 𝐵 ∈ P → ( ( ¬ 𝑦 ∈ 𝐴 ∧ ( 𝑦 +Q 𝑥 ) ∈ 𝐵 ) → ∃ 𝑧 ( ¬ 𝑦 ∈ 𝐴 ∧ ( ( 𝑦 +Q 𝑧 ) ∈ 𝐵 ∧ 𝑥 <Q 𝑧 ) ) ) ) |
| 52 | 51 | eximdv | ⊢ ( 𝐵 ∈ P → ( ∃ 𝑦 ( ¬ 𝑦 ∈ 𝐴 ∧ ( 𝑦 +Q 𝑥 ) ∈ 𝐵 ) → ∃ 𝑦 ∃ 𝑧 ( ¬ 𝑦 ∈ 𝐴 ∧ ( ( 𝑦 +Q 𝑧 ) ∈ 𝐵 ∧ 𝑥 <Q 𝑧 ) ) ) ) |
| 53 | 1 | eqabri | ⊢ ( 𝑥 ∈ 𝐶 ↔ ∃ 𝑦 ( ¬ 𝑦 ∈ 𝐴 ∧ ( 𝑦 +Q 𝑥 ) ∈ 𝐵 ) ) |
| 54 | vex | ⊢ 𝑧 ∈ V | |
| 55 | oveq2 | ⊢ ( 𝑥 = 𝑧 → ( 𝑦 +Q 𝑥 ) = ( 𝑦 +Q 𝑧 ) ) | |
| 56 | 55 | eleq1d | ⊢ ( 𝑥 = 𝑧 → ( ( 𝑦 +Q 𝑥 ) ∈ 𝐵 ↔ ( 𝑦 +Q 𝑧 ) ∈ 𝐵 ) ) |
| 57 | 56 | anbi2d | ⊢ ( 𝑥 = 𝑧 → ( ( ¬ 𝑦 ∈ 𝐴 ∧ ( 𝑦 +Q 𝑥 ) ∈ 𝐵 ) ↔ ( ¬ 𝑦 ∈ 𝐴 ∧ ( 𝑦 +Q 𝑧 ) ∈ 𝐵 ) ) ) |
| 58 | 57 | exbidv | ⊢ ( 𝑥 = 𝑧 → ( ∃ 𝑦 ( ¬ 𝑦 ∈ 𝐴 ∧ ( 𝑦 +Q 𝑥 ) ∈ 𝐵 ) ↔ ∃ 𝑦 ( ¬ 𝑦 ∈ 𝐴 ∧ ( 𝑦 +Q 𝑧 ) ∈ 𝐵 ) ) ) |
| 59 | 54 58 1 | elab2 | ⊢ ( 𝑧 ∈ 𝐶 ↔ ∃ 𝑦 ( ¬ 𝑦 ∈ 𝐴 ∧ ( 𝑦 +Q 𝑧 ) ∈ 𝐵 ) ) |
| 60 | 59 | anbi1i | ⊢ ( ( 𝑧 ∈ 𝐶 ∧ 𝑥 <Q 𝑧 ) ↔ ( ∃ 𝑦 ( ¬ 𝑦 ∈ 𝐴 ∧ ( 𝑦 +Q 𝑧 ) ∈ 𝐵 ) ∧ 𝑥 <Q 𝑧 ) ) |
| 61 | 19.41v | ⊢ ( ∃ 𝑦 ( ( ¬ 𝑦 ∈ 𝐴 ∧ ( 𝑦 +Q 𝑧 ) ∈ 𝐵 ) ∧ 𝑥 <Q 𝑧 ) ↔ ( ∃ 𝑦 ( ¬ 𝑦 ∈ 𝐴 ∧ ( 𝑦 +Q 𝑧 ) ∈ 𝐵 ) ∧ 𝑥 <Q 𝑧 ) ) | |
| 62 | anass | ⊢ ( ( ( ¬ 𝑦 ∈ 𝐴 ∧ ( 𝑦 +Q 𝑧 ) ∈ 𝐵 ) ∧ 𝑥 <Q 𝑧 ) ↔ ( ¬ 𝑦 ∈ 𝐴 ∧ ( ( 𝑦 +Q 𝑧 ) ∈ 𝐵 ∧ 𝑥 <Q 𝑧 ) ) ) | |
| 63 | 62 | exbii | ⊢ ( ∃ 𝑦 ( ( ¬ 𝑦 ∈ 𝐴 ∧ ( 𝑦 +Q 𝑧 ) ∈ 𝐵 ) ∧ 𝑥 <Q 𝑧 ) ↔ ∃ 𝑦 ( ¬ 𝑦 ∈ 𝐴 ∧ ( ( 𝑦 +Q 𝑧 ) ∈ 𝐵 ∧ 𝑥 <Q 𝑧 ) ) ) |
| 64 | 60 61 63 | 3bitr2i | ⊢ ( ( 𝑧 ∈ 𝐶 ∧ 𝑥 <Q 𝑧 ) ↔ ∃ 𝑦 ( ¬ 𝑦 ∈ 𝐴 ∧ ( ( 𝑦 +Q 𝑧 ) ∈ 𝐵 ∧ 𝑥 <Q 𝑧 ) ) ) |
| 65 | 64 | exbii | ⊢ ( ∃ 𝑧 ( 𝑧 ∈ 𝐶 ∧ 𝑥 <Q 𝑧 ) ↔ ∃ 𝑧 ∃ 𝑦 ( ¬ 𝑦 ∈ 𝐴 ∧ ( ( 𝑦 +Q 𝑧 ) ∈ 𝐵 ∧ 𝑥 <Q 𝑧 ) ) ) |
| 66 | excom | ⊢ ( ∃ 𝑦 ∃ 𝑧 ( ¬ 𝑦 ∈ 𝐴 ∧ ( ( 𝑦 +Q 𝑧 ) ∈ 𝐵 ∧ 𝑥 <Q 𝑧 ) ) ↔ ∃ 𝑧 ∃ 𝑦 ( ¬ 𝑦 ∈ 𝐴 ∧ ( ( 𝑦 +Q 𝑧 ) ∈ 𝐵 ∧ 𝑥 <Q 𝑧 ) ) ) | |
| 67 | 65 66 | bitr4i | ⊢ ( ∃ 𝑧 ( 𝑧 ∈ 𝐶 ∧ 𝑥 <Q 𝑧 ) ↔ ∃ 𝑦 ∃ 𝑧 ( ¬ 𝑦 ∈ 𝐴 ∧ ( ( 𝑦 +Q 𝑧 ) ∈ 𝐵 ∧ 𝑥 <Q 𝑧 ) ) ) |
| 68 | 52 53 67 | 3imtr4g | ⊢ ( 𝐵 ∈ P → ( 𝑥 ∈ 𝐶 → ∃ 𝑧 ( 𝑧 ∈ 𝐶 ∧ 𝑥 <Q 𝑧 ) ) ) |