This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Elimination of redundant antecedent in an ordering law. (Contributed by NM, 25-Jun-1998)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ndmovordi.2 | ⊢ dom 𝐹 = ( 𝑆 × 𝑆 ) | |
| ndmovordi.4 | ⊢ 𝑅 ⊆ ( 𝑆 × 𝑆 ) | ||
| ndmovordi.5 | ⊢ ¬ ∅ ∈ 𝑆 | ||
| ndmovordi.6 | ⊢ ( 𝐶 ∈ 𝑆 → ( 𝐴 𝑅 𝐵 ↔ ( 𝐶 𝐹 𝐴 ) 𝑅 ( 𝐶 𝐹 𝐵 ) ) ) | ||
| Assertion | ndmovordi | ⊢ ( ( 𝐶 𝐹 𝐴 ) 𝑅 ( 𝐶 𝐹 𝐵 ) → 𝐴 𝑅 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ndmovordi.2 | ⊢ dom 𝐹 = ( 𝑆 × 𝑆 ) | |
| 2 | ndmovordi.4 | ⊢ 𝑅 ⊆ ( 𝑆 × 𝑆 ) | |
| 3 | ndmovordi.5 | ⊢ ¬ ∅ ∈ 𝑆 | |
| 4 | ndmovordi.6 | ⊢ ( 𝐶 ∈ 𝑆 → ( 𝐴 𝑅 𝐵 ↔ ( 𝐶 𝐹 𝐴 ) 𝑅 ( 𝐶 𝐹 𝐵 ) ) ) | |
| 5 | 2 | brel | ⊢ ( ( 𝐶 𝐹 𝐴 ) 𝑅 ( 𝐶 𝐹 𝐵 ) → ( ( 𝐶 𝐹 𝐴 ) ∈ 𝑆 ∧ ( 𝐶 𝐹 𝐵 ) ∈ 𝑆 ) ) |
| 6 | 5 | simpld | ⊢ ( ( 𝐶 𝐹 𝐴 ) 𝑅 ( 𝐶 𝐹 𝐵 ) → ( 𝐶 𝐹 𝐴 ) ∈ 𝑆 ) |
| 7 | 1 3 | ndmovrcl | ⊢ ( ( 𝐶 𝐹 𝐴 ) ∈ 𝑆 → ( 𝐶 ∈ 𝑆 ∧ 𝐴 ∈ 𝑆 ) ) |
| 8 | 7 | simpld | ⊢ ( ( 𝐶 𝐹 𝐴 ) ∈ 𝑆 → 𝐶 ∈ 𝑆 ) |
| 9 | 6 8 | syl | ⊢ ( ( 𝐶 𝐹 𝐴 ) 𝑅 ( 𝐶 𝐹 𝐵 ) → 𝐶 ∈ 𝑆 ) |
| 10 | 4 | biimprd | ⊢ ( 𝐶 ∈ 𝑆 → ( ( 𝐶 𝐹 𝐴 ) 𝑅 ( 𝐶 𝐹 𝐵 ) → 𝐴 𝑅 𝐵 ) ) |
| 11 | 9 10 | mpcom | ⊢ ( ( 𝐶 𝐹 𝐴 ) 𝑅 ( 𝐶 𝐹 𝐵 ) → 𝐴 𝑅 𝐵 ) |