This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The integer powers of a fixed positive real less than 1 decrease as the exponent increases. (Contributed by NM, 2-Aug-2006) (Revised by Mario Carneiro, 5-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ltexp2r | ⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ 𝐴 < 1 ) → ( 𝑀 < 𝑁 ↔ ( 𝐴 ↑ 𝑁 ) < ( 𝐴 ↑ 𝑀 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl1 | ⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ 𝐴 < 1 ) → 𝐴 ∈ ℝ+ ) | |
| 2 | 1 | rpcnd | ⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ 𝐴 < 1 ) → 𝐴 ∈ ℂ ) |
| 3 | 1 | rpne0d | ⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ 𝐴 < 1 ) → 𝐴 ≠ 0 ) |
| 4 | simpl2 | ⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ 𝐴 < 1 ) → 𝑀 ∈ ℤ ) | |
| 5 | exprec | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝑀 ∈ ℤ ) → ( ( 1 / 𝐴 ) ↑ 𝑀 ) = ( 1 / ( 𝐴 ↑ 𝑀 ) ) ) | |
| 6 | 2 3 4 5 | syl3anc | ⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ 𝐴 < 1 ) → ( ( 1 / 𝐴 ) ↑ 𝑀 ) = ( 1 / ( 𝐴 ↑ 𝑀 ) ) ) |
| 7 | simpl3 | ⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ 𝐴 < 1 ) → 𝑁 ∈ ℤ ) | |
| 8 | exprec | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝑁 ∈ ℤ ) → ( ( 1 / 𝐴 ) ↑ 𝑁 ) = ( 1 / ( 𝐴 ↑ 𝑁 ) ) ) | |
| 9 | 2 3 7 8 | syl3anc | ⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ 𝐴 < 1 ) → ( ( 1 / 𝐴 ) ↑ 𝑁 ) = ( 1 / ( 𝐴 ↑ 𝑁 ) ) ) |
| 10 | 6 9 | breq12d | ⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ 𝐴 < 1 ) → ( ( ( 1 / 𝐴 ) ↑ 𝑀 ) < ( ( 1 / 𝐴 ) ↑ 𝑁 ) ↔ ( 1 / ( 𝐴 ↑ 𝑀 ) ) < ( 1 / ( 𝐴 ↑ 𝑁 ) ) ) ) |
| 11 | 1 | rprecred | ⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ 𝐴 < 1 ) → ( 1 / 𝐴 ) ∈ ℝ ) |
| 12 | simpr | ⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ 𝐴 < 1 ) → 𝐴 < 1 ) | |
| 13 | 1 | reclt1d | ⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ 𝐴 < 1 ) → ( 𝐴 < 1 ↔ 1 < ( 1 / 𝐴 ) ) ) |
| 14 | 12 13 | mpbid | ⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ 𝐴 < 1 ) → 1 < ( 1 / 𝐴 ) ) |
| 15 | ltexp2 | ⊢ ( ( ( ( 1 / 𝐴 ) ∈ ℝ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ 1 < ( 1 / 𝐴 ) ) → ( 𝑀 < 𝑁 ↔ ( ( 1 / 𝐴 ) ↑ 𝑀 ) < ( ( 1 / 𝐴 ) ↑ 𝑁 ) ) ) | |
| 16 | 11 4 7 14 15 | syl31anc | ⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ 𝐴 < 1 ) → ( 𝑀 < 𝑁 ↔ ( ( 1 / 𝐴 ) ↑ 𝑀 ) < ( ( 1 / 𝐴 ) ↑ 𝑁 ) ) ) |
| 17 | rpexpcl | ⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝑁 ∈ ℤ ) → ( 𝐴 ↑ 𝑁 ) ∈ ℝ+ ) | |
| 18 | 1 7 17 | syl2anc | ⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ 𝐴 < 1 ) → ( 𝐴 ↑ 𝑁 ) ∈ ℝ+ ) |
| 19 | rpexpcl | ⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝑀 ∈ ℤ ) → ( 𝐴 ↑ 𝑀 ) ∈ ℝ+ ) | |
| 20 | 1 4 19 | syl2anc | ⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ 𝐴 < 1 ) → ( 𝐴 ↑ 𝑀 ) ∈ ℝ+ ) |
| 21 | 18 20 | ltrecd | ⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ 𝐴 < 1 ) → ( ( 𝐴 ↑ 𝑁 ) < ( 𝐴 ↑ 𝑀 ) ↔ ( 1 / ( 𝐴 ↑ 𝑀 ) ) < ( 1 / ( 𝐴 ↑ 𝑁 ) ) ) ) |
| 22 | 10 16 21 | 3bitr4d | ⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ 𝐴 < 1 ) → ( 𝑀 < 𝑁 ↔ ( 𝐴 ↑ 𝑁 ) < ( 𝐴 ↑ 𝑀 ) ) ) |