This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Strict ordering law for exponentiation of a fixed real base greater than 1 to integer exponents. (Contributed by NM, 2-Aug-2006) (Revised by Mario Carneiro, 5-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ltexp2 | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ 1 < 𝐴 ) → ( 𝑀 < 𝑁 ↔ ( 𝐴 ↑ 𝑀 ) < ( 𝐴 ↑ 𝑁 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq2 | ⊢ ( 𝑥 = 𝑦 → ( 𝐴 ↑ 𝑥 ) = ( 𝐴 ↑ 𝑦 ) ) | |
| 2 | oveq2 | ⊢ ( 𝑥 = 𝑀 → ( 𝐴 ↑ 𝑥 ) = ( 𝐴 ↑ 𝑀 ) ) | |
| 3 | oveq2 | ⊢ ( 𝑥 = 𝑁 → ( 𝐴 ↑ 𝑥 ) = ( 𝐴 ↑ 𝑁 ) ) | |
| 4 | zssre | ⊢ ℤ ⊆ ℝ | |
| 5 | simpl | ⊢ ( ( 𝐴 ∈ ℝ ∧ 1 < 𝐴 ) → 𝐴 ∈ ℝ ) | |
| 6 | 0red | ⊢ ( ( 𝐴 ∈ ℝ ∧ 1 < 𝐴 ) → 0 ∈ ℝ ) | |
| 7 | 1red | ⊢ ( ( 𝐴 ∈ ℝ ∧ 1 < 𝐴 ) → 1 ∈ ℝ ) | |
| 8 | 0lt1 | ⊢ 0 < 1 | |
| 9 | 8 | a1i | ⊢ ( ( 𝐴 ∈ ℝ ∧ 1 < 𝐴 ) → 0 < 1 ) |
| 10 | simpr | ⊢ ( ( 𝐴 ∈ ℝ ∧ 1 < 𝐴 ) → 1 < 𝐴 ) | |
| 11 | 6 7 5 9 10 | lttrd | ⊢ ( ( 𝐴 ∈ ℝ ∧ 1 < 𝐴 ) → 0 < 𝐴 ) |
| 12 | 5 11 | elrpd | ⊢ ( ( 𝐴 ∈ ℝ ∧ 1 < 𝐴 ) → 𝐴 ∈ ℝ+ ) |
| 13 | rpexpcl | ⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝑥 ∈ ℤ ) → ( 𝐴 ↑ 𝑥 ) ∈ ℝ+ ) | |
| 14 | 12 13 | sylan | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 1 < 𝐴 ) ∧ 𝑥 ∈ ℤ ) → ( 𝐴 ↑ 𝑥 ) ∈ ℝ+ ) |
| 15 | 14 | rpred | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 1 < 𝐴 ) ∧ 𝑥 ∈ ℤ ) → ( 𝐴 ↑ 𝑥 ) ∈ ℝ ) |
| 16 | simpll | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 1 < 𝐴 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ) → 𝐴 ∈ ℝ ) | |
| 17 | simprl | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 1 < 𝐴 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ) → 𝑥 ∈ ℤ ) | |
| 18 | simprr | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 1 < 𝐴 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ) → 𝑦 ∈ ℤ ) | |
| 19 | simplr | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 1 < 𝐴 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ) → 1 < 𝐴 ) | |
| 20 | ltexp2a | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ∧ ( 1 < 𝐴 ∧ 𝑥 < 𝑦 ) ) → ( 𝐴 ↑ 𝑥 ) < ( 𝐴 ↑ 𝑦 ) ) | |
| 21 | 20 | expr | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ∧ 1 < 𝐴 ) → ( 𝑥 < 𝑦 → ( 𝐴 ↑ 𝑥 ) < ( 𝐴 ↑ 𝑦 ) ) ) |
| 22 | 16 17 18 19 21 | syl31anc | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 1 < 𝐴 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ) → ( 𝑥 < 𝑦 → ( 𝐴 ↑ 𝑥 ) < ( 𝐴 ↑ 𝑦 ) ) ) |
| 23 | 1 2 3 4 15 22 | ltord1 | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 1 < 𝐴 ) ∧ ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ) → ( 𝑀 < 𝑁 ↔ ( 𝐴 ↑ 𝑀 ) < ( 𝐴 ↑ 𝑁 ) ) ) |
| 24 | 23 | ancom2s | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 1 < 𝐴 ) ∧ ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ) ) → ( 𝑀 < 𝑁 ↔ ( 𝐴 ↑ 𝑀 ) < ( 𝐴 ↑ 𝑁 ) ) ) |
| 25 | 24 | exp43 | ⊢ ( 𝐴 ∈ ℝ → ( 1 < 𝐴 → ( 𝑁 ∈ ℤ → ( 𝑀 ∈ ℤ → ( 𝑀 < 𝑁 ↔ ( 𝐴 ↑ 𝑀 ) < ( 𝐴 ↑ 𝑁 ) ) ) ) ) ) |
| 26 | 25 | com24 | ⊢ ( 𝐴 ∈ ℝ → ( 𝑀 ∈ ℤ → ( 𝑁 ∈ ℤ → ( 1 < 𝐴 → ( 𝑀 < 𝑁 ↔ ( 𝐴 ↑ 𝑀 ) < ( 𝐴 ↑ 𝑁 ) ) ) ) ) ) |
| 27 | 26 | 3imp1 | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ 1 < 𝐴 ) → ( 𝑀 < 𝑁 ↔ ( 𝐴 ↑ 𝑀 ) < ( 𝐴 ↑ 𝑁 ) ) ) |