This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Weak ordering relationship for exponentiation of a fixed real base in [ 0 , 1 ] to integer exponents. (Contributed by Paul Chapman, 14-Jan-2008) (Revised by Mario Carneiro, 29-Apr-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | leexp2r | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) ∧ ( 0 ≤ 𝐴 ∧ 𝐴 ≤ 1 ) ) → ( 𝐴 ↑ 𝑁 ) ≤ ( 𝐴 ↑ 𝑀 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq2 | ⊢ ( 𝑗 = 𝑀 → ( 𝐴 ↑ 𝑗 ) = ( 𝐴 ↑ 𝑀 ) ) | |
| 2 | 1 | breq1d | ⊢ ( 𝑗 = 𝑀 → ( ( 𝐴 ↑ 𝑗 ) ≤ ( 𝐴 ↑ 𝑀 ) ↔ ( 𝐴 ↑ 𝑀 ) ≤ ( 𝐴 ↑ 𝑀 ) ) ) |
| 3 | 2 | imbi2d | ⊢ ( 𝑗 = 𝑀 → ( ( ( ( 𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0 ) ∧ ( 0 ≤ 𝐴 ∧ 𝐴 ≤ 1 ) ) → ( 𝐴 ↑ 𝑗 ) ≤ ( 𝐴 ↑ 𝑀 ) ) ↔ ( ( ( 𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0 ) ∧ ( 0 ≤ 𝐴 ∧ 𝐴 ≤ 1 ) ) → ( 𝐴 ↑ 𝑀 ) ≤ ( 𝐴 ↑ 𝑀 ) ) ) ) |
| 4 | oveq2 | ⊢ ( 𝑗 = 𝑘 → ( 𝐴 ↑ 𝑗 ) = ( 𝐴 ↑ 𝑘 ) ) | |
| 5 | 4 | breq1d | ⊢ ( 𝑗 = 𝑘 → ( ( 𝐴 ↑ 𝑗 ) ≤ ( 𝐴 ↑ 𝑀 ) ↔ ( 𝐴 ↑ 𝑘 ) ≤ ( 𝐴 ↑ 𝑀 ) ) ) |
| 6 | 5 | imbi2d | ⊢ ( 𝑗 = 𝑘 → ( ( ( ( 𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0 ) ∧ ( 0 ≤ 𝐴 ∧ 𝐴 ≤ 1 ) ) → ( 𝐴 ↑ 𝑗 ) ≤ ( 𝐴 ↑ 𝑀 ) ) ↔ ( ( ( 𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0 ) ∧ ( 0 ≤ 𝐴 ∧ 𝐴 ≤ 1 ) ) → ( 𝐴 ↑ 𝑘 ) ≤ ( 𝐴 ↑ 𝑀 ) ) ) ) |
| 7 | oveq2 | ⊢ ( 𝑗 = ( 𝑘 + 1 ) → ( 𝐴 ↑ 𝑗 ) = ( 𝐴 ↑ ( 𝑘 + 1 ) ) ) | |
| 8 | 7 | breq1d | ⊢ ( 𝑗 = ( 𝑘 + 1 ) → ( ( 𝐴 ↑ 𝑗 ) ≤ ( 𝐴 ↑ 𝑀 ) ↔ ( 𝐴 ↑ ( 𝑘 + 1 ) ) ≤ ( 𝐴 ↑ 𝑀 ) ) ) |
| 9 | 8 | imbi2d | ⊢ ( 𝑗 = ( 𝑘 + 1 ) → ( ( ( ( 𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0 ) ∧ ( 0 ≤ 𝐴 ∧ 𝐴 ≤ 1 ) ) → ( 𝐴 ↑ 𝑗 ) ≤ ( 𝐴 ↑ 𝑀 ) ) ↔ ( ( ( 𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0 ) ∧ ( 0 ≤ 𝐴 ∧ 𝐴 ≤ 1 ) ) → ( 𝐴 ↑ ( 𝑘 + 1 ) ) ≤ ( 𝐴 ↑ 𝑀 ) ) ) ) |
| 10 | oveq2 | ⊢ ( 𝑗 = 𝑁 → ( 𝐴 ↑ 𝑗 ) = ( 𝐴 ↑ 𝑁 ) ) | |
| 11 | 10 | breq1d | ⊢ ( 𝑗 = 𝑁 → ( ( 𝐴 ↑ 𝑗 ) ≤ ( 𝐴 ↑ 𝑀 ) ↔ ( 𝐴 ↑ 𝑁 ) ≤ ( 𝐴 ↑ 𝑀 ) ) ) |
| 12 | 11 | imbi2d | ⊢ ( 𝑗 = 𝑁 → ( ( ( ( 𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0 ) ∧ ( 0 ≤ 𝐴 ∧ 𝐴 ≤ 1 ) ) → ( 𝐴 ↑ 𝑗 ) ≤ ( 𝐴 ↑ 𝑀 ) ) ↔ ( ( ( 𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0 ) ∧ ( 0 ≤ 𝐴 ∧ 𝐴 ≤ 1 ) ) → ( 𝐴 ↑ 𝑁 ) ≤ ( 𝐴 ↑ 𝑀 ) ) ) ) |
| 13 | reexpcl | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0 ) → ( 𝐴 ↑ 𝑀 ) ∈ ℝ ) | |
| 14 | 13 | adantr | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0 ) ∧ ( 0 ≤ 𝐴 ∧ 𝐴 ≤ 1 ) ) → ( 𝐴 ↑ 𝑀 ) ∈ ℝ ) |
| 15 | 14 | leidd | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0 ) ∧ ( 0 ≤ 𝐴 ∧ 𝐴 ≤ 1 ) ) → ( 𝐴 ↑ 𝑀 ) ≤ ( 𝐴 ↑ 𝑀 ) ) |
| 16 | simprll | ⊢ ( ( 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( ( 𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0 ) ∧ ( 0 ≤ 𝐴 ∧ 𝐴 ≤ 1 ) ) ) → 𝐴 ∈ ℝ ) | |
| 17 | 1red | ⊢ ( ( 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( ( 𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0 ) ∧ ( 0 ≤ 𝐴 ∧ 𝐴 ≤ 1 ) ) ) → 1 ∈ ℝ ) | |
| 18 | simprlr | ⊢ ( ( 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( ( 𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0 ) ∧ ( 0 ≤ 𝐴 ∧ 𝐴 ≤ 1 ) ) ) → 𝑀 ∈ ℕ0 ) | |
| 19 | simpl | ⊢ ( ( 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( ( 𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0 ) ∧ ( 0 ≤ 𝐴 ∧ 𝐴 ≤ 1 ) ) ) → 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) | |
| 20 | eluznn0 | ⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) → 𝑘 ∈ ℕ0 ) | |
| 21 | 18 19 20 | syl2anc | ⊢ ( ( 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( ( 𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0 ) ∧ ( 0 ≤ 𝐴 ∧ 𝐴 ≤ 1 ) ) ) → 𝑘 ∈ ℕ0 ) |
| 22 | reexpcl | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑘 ∈ ℕ0 ) → ( 𝐴 ↑ 𝑘 ) ∈ ℝ ) | |
| 23 | 16 21 22 | syl2anc | ⊢ ( ( 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( ( 𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0 ) ∧ ( 0 ≤ 𝐴 ∧ 𝐴 ≤ 1 ) ) ) → ( 𝐴 ↑ 𝑘 ) ∈ ℝ ) |
| 24 | simprrl | ⊢ ( ( 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( ( 𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0 ) ∧ ( 0 ≤ 𝐴 ∧ 𝐴 ≤ 1 ) ) ) → 0 ≤ 𝐴 ) | |
| 25 | expge0 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑘 ∈ ℕ0 ∧ 0 ≤ 𝐴 ) → 0 ≤ ( 𝐴 ↑ 𝑘 ) ) | |
| 26 | 16 21 24 25 | syl3anc | ⊢ ( ( 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( ( 𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0 ) ∧ ( 0 ≤ 𝐴 ∧ 𝐴 ≤ 1 ) ) ) → 0 ≤ ( 𝐴 ↑ 𝑘 ) ) |
| 27 | simprrr | ⊢ ( ( 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( ( 𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0 ) ∧ ( 0 ≤ 𝐴 ∧ 𝐴 ≤ 1 ) ) ) → 𝐴 ≤ 1 ) | |
| 28 | 16 17 23 26 27 | lemul2ad | ⊢ ( ( 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( ( 𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0 ) ∧ ( 0 ≤ 𝐴 ∧ 𝐴 ≤ 1 ) ) ) → ( ( 𝐴 ↑ 𝑘 ) · 𝐴 ) ≤ ( ( 𝐴 ↑ 𝑘 ) · 1 ) ) |
| 29 | 16 | recnd | ⊢ ( ( 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( ( 𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0 ) ∧ ( 0 ≤ 𝐴 ∧ 𝐴 ≤ 1 ) ) ) → 𝐴 ∈ ℂ ) |
| 30 | expp1 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0 ) → ( 𝐴 ↑ ( 𝑘 + 1 ) ) = ( ( 𝐴 ↑ 𝑘 ) · 𝐴 ) ) | |
| 31 | 29 21 30 | syl2anc | ⊢ ( ( 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( ( 𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0 ) ∧ ( 0 ≤ 𝐴 ∧ 𝐴 ≤ 1 ) ) ) → ( 𝐴 ↑ ( 𝑘 + 1 ) ) = ( ( 𝐴 ↑ 𝑘 ) · 𝐴 ) ) |
| 32 | 23 | recnd | ⊢ ( ( 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( ( 𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0 ) ∧ ( 0 ≤ 𝐴 ∧ 𝐴 ≤ 1 ) ) ) → ( 𝐴 ↑ 𝑘 ) ∈ ℂ ) |
| 33 | 32 | mulridd | ⊢ ( ( 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( ( 𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0 ) ∧ ( 0 ≤ 𝐴 ∧ 𝐴 ≤ 1 ) ) ) → ( ( 𝐴 ↑ 𝑘 ) · 1 ) = ( 𝐴 ↑ 𝑘 ) ) |
| 34 | 33 | eqcomd | ⊢ ( ( 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( ( 𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0 ) ∧ ( 0 ≤ 𝐴 ∧ 𝐴 ≤ 1 ) ) ) → ( 𝐴 ↑ 𝑘 ) = ( ( 𝐴 ↑ 𝑘 ) · 1 ) ) |
| 35 | 28 31 34 | 3brtr4d | ⊢ ( ( 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( ( 𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0 ) ∧ ( 0 ≤ 𝐴 ∧ 𝐴 ≤ 1 ) ) ) → ( 𝐴 ↑ ( 𝑘 + 1 ) ) ≤ ( 𝐴 ↑ 𝑘 ) ) |
| 36 | peano2nn0 | ⊢ ( 𝑘 ∈ ℕ0 → ( 𝑘 + 1 ) ∈ ℕ0 ) | |
| 37 | 21 36 | syl | ⊢ ( ( 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( ( 𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0 ) ∧ ( 0 ≤ 𝐴 ∧ 𝐴 ≤ 1 ) ) ) → ( 𝑘 + 1 ) ∈ ℕ0 ) |
| 38 | reexpcl | ⊢ ( ( 𝐴 ∈ ℝ ∧ ( 𝑘 + 1 ) ∈ ℕ0 ) → ( 𝐴 ↑ ( 𝑘 + 1 ) ) ∈ ℝ ) | |
| 39 | 16 37 38 | syl2anc | ⊢ ( ( 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( ( 𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0 ) ∧ ( 0 ≤ 𝐴 ∧ 𝐴 ≤ 1 ) ) ) → ( 𝐴 ↑ ( 𝑘 + 1 ) ) ∈ ℝ ) |
| 40 | 13 | ad2antrl | ⊢ ( ( 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( ( 𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0 ) ∧ ( 0 ≤ 𝐴 ∧ 𝐴 ≤ 1 ) ) ) → ( 𝐴 ↑ 𝑀 ) ∈ ℝ ) |
| 41 | letr | ⊢ ( ( ( 𝐴 ↑ ( 𝑘 + 1 ) ) ∈ ℝ ∧ ( 𝐴 ↑ 𝑘 ) ∈ ℝ ∧ ( 𝐴 ↑ 𝑀 ) ∈ ℝ ) → ( ( ( 𝐴 ↑ ( 𝑘 + 1 ) ) ≤ ( 𝐴 ↑ 𝑘 ) ∧ ( 𝐴 ↑ 𝑘 ) ≤ ( 𝐴 ↑ 𝑀 ) ) → ( 𝐴 ↑ ( 𝑘 + 1 ) ) ≤ ( 𝐴 ↑ 𝑀 ) ) ) | |
| 42 | 39 23 40 41 | syl3anc | ⊢ ( ( 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( ( 𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0 ) ∧ ( 0 ≤ 𝐴 ∧ 𝐴 ≤ 1 ) ) ) → ( ( ( 𝐴 ↑ ( 𝑘 + 1 ) ) ≤ ( 𝐴 ↑ 𝑘 ) ∧ ( 𝐴 ↑ 𝑘 ) ≤ ( 𝐴 ↑ 𝑀 ) ) → ( 𝐴 ↑ ( 𝑘 + 1 ) ) ≤ ( 𝐴 ↑ 𝑀 ) ) ) |
| 43 | 35 42 | mpand | ⊢ ( ( 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( ( 𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0 ) ∧ ( 0 ≤ 𝐴 ∧ 𝐴 ≤ 1 ) ) ) → ( ( 𝐴 ↑ 𝑘 ) ≤ ( 𝐴 ↑ 𝑀 ) → ( 𝐴 ↑ ( 𝑘 + 1 ) ) ≤ ( 𝐴 ↑ 𝑀 ) ) ) |
| 44 | 43 | ex | ⊢ ( 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) → ( ( ( 𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0 ) ∧ ( 0 ≤ 𝐴 ∧ 𝐴 ≤ 1 ) ) → ( ( 𝐴 ↑ 𝑘 ) ≤ ( 𝐴 ↑ 𝑀 ) → ( 𝐴 ↑ ( 𝑘 + 1 ) ) ≤ ( 𝐴 ↑ 𝑀 ) ) ) ) |
| 45 | 44 | a2d | ⊢ ( 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) → ( ( ( ( 𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0 ) ∧ ( 0 ≤ 𝐴 ∧ 𝐴 ≤ 1 ) ) → ( 𝐴 ↑ 𝑘 ) ≤ ( 𝐴 ↑ 𝑀 ) ) → ( ( ( 𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0 ) ∧ ( 0 ≤ 𝐴 ∧ 𝐴 ≤ 1 ) ) → ( 𝐴 ↑ ( 𝑘 + 1 ) ) ≤ ( 𝐴 ↑ 𝑀 ) ) ) ) |
| 46 | 3 6 9 12 15 45 | uzind4i | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( ( ( 𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0 ) ∧ ( 0 ≤ 𝐴 ∧ 𝐴 ≤ 1 ) ) → ( 𝐴 ↑ 𝑁 ) ≤ ( 𝐴 ↑ 𝑀 ) ) ) |
| 47 | 46 | expd | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( ( 𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0 ) → ( ( 0 ≤ 𝐴 ∧ 𝐴 ≤ 1 ) → ( 𝐴 ↑ 𝑁 ) ≤ ( 𝐴 ↑ 𝑀 ) ) ) ) |
| 48 | 47 | com12 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0 ) → ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( ( 0 ≤ 𝐴 ∧ 𝐴 ≤ 1 ) → ( 𝐴 ↑ 𝑁 ) ≤ ( 𝐴 ↑ 𝑀 ) ) ) ) |
| 49 | 48 | 3impia | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( ( 0 ≤ 𝐴 ∧ 𝐴 ≤ 1 ) → ( 𝐴 ↑ 𝑁 ) ≤ ( 𝐴 ↑ 𝑀 ) ) ) |
| 50 | 49 | imp | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) ∧ ( 0 ≤ 𝐴 ∧ 𝐴 ≤ 1 ) ) → ( 𝐴 ↑ 𝑁 ) ≤ ( 𝐴 ↑ 𝑀 ) ) |