This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The integer powers of a fixed positive real less than 1 decrease as the exponent increases. (Contributed by NM, 2-Aug-2006) (Revised by Mario Carneiro, 5-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ltexp2r | |- ( ( ( A e. RR+ /\ M e. ZZ /\ N e. ZZ ) /\ A < 1 ) -> ( M < N <-> ( A ^ N ) < ( A ^ M ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl1 | |- ( ( ( A e. RR+ /\ M e. ZZ /\ N e. ZZ ) /\ A < 1 ) -> A e. RR+ ) |
|
| 2 | 1 | rpcnd | |- ( ( ( A e. RR+ /\ M e. ZZ /\ N e. ZZ ) /\ A < 1 ) -> A e. CC ) |
| 3 | 1 | rpne0d | |- ( ( ( A e. RR+ /\ M e. ZZ /\ N e. ZZ ) /\ A < 1 ) -> A =/= 0 ) |
| 4 | simpl2 | |- ( ( ( A e. RR+ /\ M e. ZZ /\ N e. ZZ ) /\ A < 1 ) -> M e. ZZ ) |
|
| 5 | exprec | |- ( ( A e. CC /\ A =/= 0 /\ M e. ZZ ) -> ( ( 1 / A ) ^ M ) = ( 1 / ( A ^ M ) ) ) |
|
| 6 | 2 3 4 5 | syl3anc | |- ( ( ( A e. RR+ /\ M e. ZZ /\ N e. ZZ ) /\ A < 1 ) -> ( ( 1 / A ) ^ M ) = ( 1 / ( A ^ M ) ) ) |
| 7 | simpl3 | |- ( ( ( A e. RR+ /\ M e. ZZ /\ N e. ZZ ) /\ A < 1 ) -> N e. ZZ ) |
|
| 8 | exprec | |- ( ( A e. CC /\ A =/= 0 /\ N e. ZZ ) -> ( ( 1 / A ) ^ N ) = ( 1 / ( A ^ N ) ) ) |
|
| 9 | 2 3 7 8 | syl3anc | |- ( ( ( A e. RR+ /\ M e. ZZ /\ N e. ZZ ) /\ A < 1 ) -> ( ( 1 / A ) ^ N ) = ( 1 / ( A ^ N ) ) ) |
| 10 | 6 9 | breq12d | |- ( ( ( A e. RR+ /\ M e. ZZ /\ N e. ZZ ) /\ A < 1 ) -> ( ( ( 1 / A ) ^ M ) < ( ( 1 / A ) ^ N ) <-> ( 1 / ( A ^ M ) ) < ( 1 / ( A ^ N ) ) ) ) |
| 11 | 1 | rprecred | |- ( ( ( A e. RR+ /\ M e. ZZ /\ N e. ZZ ) /\ A < 1 ) -> ( 1 / A ) e. RR ) |
| 12 | simpr | |- ( ( ( A e. RR+ /\ M e. ZZ /\ N e. ZZ ) /\ A < 1 ) -> A < 1 ) |
|
| 13 | 1 | reclt1d | |- ( ( ( A e. RR+ /\ M e. ZZ /\ N e. ZZ ) /\ A < 1 ) -> ( A < 1 <-> 1 < ( 1 / A ) ) ) |
| 14 | 12 13 | mpbid | |- ( ( ( A e. RR+ /\ M e. ZZ /\ N e. ZZ ) /\ A < 1 ) -> 1 < ( 1 / A ) ) |
| 15 | ltexp2 | |- ( ( ( ( 1 / A ) e. RR /\ M e. ZZ /\ N e. ZZ ) /\ 1 < ( 1 / A ) ) -> ( M < N <-> ( ( 1 / A ) ^ M ) < ( ( 1 / A ) ^ N ) ) ) |
|
| 16 | 11 4 7 14 15 | syl31anc | |- ( ( ( A e. RR+ /\ M e. ZZ /\ N e. ZZ ) /\ A < 1 ) -> ( M < N <-> ( ( 1 / A ) ^ M ) < ( ( 1 / A ) ^ N ) ) ) |
| 17 | rpexpcl | |- ( ( A e. RR+ /\ N e. ZZ ) -> ( A ^ N ) e. RR+ ) |
|
| 18 | 1 7 17 | syl2anc | |- ( ( ( A e. RR+ /\ M e. ZZ /\ N e. ZZ ) /\ A < 1 ) -> ( A ^ N ) e. RR+ ) |
| 19 | rpexpcl | |- ( ( A e. RR+ /\ M e. ZZ ) -> ( A ^ M ) e. RR+ ) |
|
| 20 | 1 4 19 | syl2anc | |- ( ( ( A e. RR+ /\ M e. ZZ /\ N e. ZZ ) /\ A < 1 ) -> ( A ^ M ) e. RR+ ) |
| 21 | 18 20 | ltrecd | |- ( ( ( A e. RR+ /\ M e. ZZ /\ N e. ZZ ) /\ A < 1 ) -> ( ( A ^ N ) < ( A ^ M ) <-> ( 1 / ( A ^ M ) ) < ( 1 / ( A ^ N ) ) ) ) |
| 22 | 10 16 21 | 3bitr4d | |- ( ( ( A e. RR+ /\ M e. ZZ /\ N e. ZZ ) /\ A < 1 ) -> ( M < N <-> ( A ^ N ) < ( A ^ M ) ) ) |