This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Positive real 'less than' is a strict ordering. Part of Proposition 9-3.3 of Gleason p. 122. (Contributed by NM, 25-Feb-1996) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ltsopr | ⊢ <P Or P |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pssirr | ⊢ ¬ 𝑥 ⊊ 𝑥 | |
| 2 | ltprord | ⊢ ( ( 𝑥 ∈ P ∧ 𝑥 ∈ P ) → ( 𝑥 <P 𝑥 ↔ 𝑥 ⊊ 𝑥 ) ) | |
| 3 | 1 2 | mtbiri | ⊢ ( ( 𝑥 ∈ P ∧ 𝑥 ∈ P ) → ¬ 𝑥 <P 𝑥 ) |
| 4 | 3 | anidms | ⊢ ( 𝑥 ∈ P → ¬ 𝑥 <P 𝑥 ) |
| 5 | psstr | ⊢ ( ( 𝑥 ⊊ 𝑦 ∧ 𝑦 ⊊ 𝑧 ) → 𝑥 ⊊ 𝑧 ) | |
| 6 | ltprord | ⊢ ( ( 𝑥 ∈ P ∧ 𝑦 ∈ P ) → ( 𝑥 <P 𝑦 ↔ 𝑥 ⊊ 𝑦 ) ) | |
| 7 | 6 | 3adant3 | ⊢ ( ( 𝑥 ∈ P ∧ 𝑦 ∈ P ∧ 𝑧 ∈ P ) → ( 𝑥 <P 𝑦 ↔ 𝑥 ⊊ 𝑦 ) ) |
| 8 | ltprord | ⊢ ( ( 𝑦 ∈ P ∧ 𝑧 ∈ P ) → ( 𝑦 <P 𝑧 ↔ 𝑦 ⊊ 𝑧 ) ) | |
| 9 | 8 | 3adant1 | ⊢ ( ( 𝑥 ∈ P ∧ 𝑦 ∈ P ∧ 𝑧 ∈ P ) → ( 𝑦 <P 𝑧 ↔ 𝑦 ⊊ 𝑧 ) ) |
| 10 | 7 9 | anbi12d | ⊢ ( ( 𝑥 ∈ P ∧ 𝑦 ∈ P ∧ 𝑧 ∈ P ) → ( ( 𝑥 <P 𝑦 ∧ 𝑦 <P 𝑧 ) ↔ ( 𝑥 ⊊ 𝑦 ∧ 𝑦 ⊊ 𝑧 ) ) ) |
| 11 | ltprord | ⊢ ( ( 𝑥 ∈ P ∧ 𝑧 ∈ P ) → ( 𝑥 <P 𝑧 ↔ 𝑥 ⊊ 𝑧 ) ) | |
| 12 | 11 | 3adant2 | ⊢ ( ( 𝑥 ∈ P ∧ 𝑦 ∈ P ∧ 𝑧 ∈ P ) → ( 𝑥 <P 𝑧 ↔ 𝑥 ⊊ 𝑧 ) ) |
| 13 | 10 12 | imbi12d | ⊢ ( ( 𝑥 ∈ P ∧ 𝑦 ∈ P ∧ 𝑧 ∈ P ) → ( ( ( 𝑥 <P 𝑦 ∧ 𝑦 <P 𝑧 ) → 𝑥 <P 𝑧 ) ↔ ( ( 𝑥 ⊊ 𝑦 ∧ 𝑦 ⊊ 𝑧 ) → 𝑥 ⊊ 𝑧 ) ) ) |
| 14 | 5 13 | mpbiri | ⊢ ( ( 𝑥 ∈ P ∧ 𝑦 ∈ P ∧ 𝑧 ∈ P ) → ( ( 𝑥 <P 𝑦 ∧ 𝑦 <P 𝑧 ) → 𝑥 <P 𝑧 ) ) |
| 15 | psslinpr | ⊢ ( ( 𝑥 ∈ P ∧ 𝑦 ∈ P ) → ( 𝑥 ⊊ 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 ⊊ 𝑥 ) ) | |
| 16 | biidd | ⊢ ( ( 𝑥 ∈ P ∧ 𝑦 ∈ P ) → ( 𝑥 = 𝑦 ↔ 𝑥 = 𝑦 ) ) | |
| 17 | ltprord | ⊢ ( ( 𝑦 ∈ P ∧ 𝑥 ∈ P ) → ( 𝑦 <P 𝑥 ↔ 𝑦 ⊊ 𝑥 ) ) | |
| 18 | 17 | ancoms | ⊢ ( ( 𝑥 ∈ P ∧ 𝑦 ∈ P ) → ( 𝑦 <P 𝑥 ↔ 𝑦 ⊊ 𝑥 ) ) |
| 19 | 6 16 18 | 3orbi123d | ⊢ ( ( 𝑥 ∈ P ∧ 𝑦 ∈ P ) → ( ( 𝑥 <P 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 <P 𝑥 ) ↔ ( 𝑥 ⊊ 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 ⊊ 𝑥 ) ) ) |
| 20 | 15 19 | mpbird | ⊢ ( ( 𝑥 ∈ P ∧ 𝑦 ∈ P ) → ( 𝑥 <P 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 <P 𝑥 ) ) |
| 21 | 4 14 20 | issoi | ⊢ <P Or P |