This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Elimination of redundant antecedents in an ordering law. (Contributed by NM, 7-Mar-1996)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ndmov.1 | ⊢ dom 𝐹 = ( 𝑆 × 𝑆 ) | |
| ndmovord.4 | ⊢ 𝑅 ⊆ ( 𝑆 × 𝑆 ) | ||
| ndmovord.5 | ⊢ ¬ ∅ ∈ 𝑆 | ||
| ndmovord.6 | ⊢ ( ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆 ) → ( 𝐴 𝑅 𝐵 ↔ ( 𝐶 𝐹 𝐴 ) 𝑅 ( 𝐶 𝐹 𝐵 ) ) ) | ||
| Assertion | ndmovord | ⊢ ( 𝐶 ∈ 𝑆 → ( 𝐴 𝑅 𝐵 ↔ ( 𝐶 𝐹 𝐴 ) 𝑅 ( 𝐶 𝐹 𝐵 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ndmov.1 | ⊢ dom 𝐹 = ( 𝑆 × 𝑆 ) | |
| 2 | ndmovord.4 | ⊢ 𝑅 ⊆ ( 𝑆 × 𝑆 ) | |
| 3 | ndmovord.5 | ⊢ ¬ ∅ ∈ 𝑆 | |
| 4 | ndmovord.6 | ⊢ ( ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆 ) → ( 𝐴 𝑅 𝐵 ↔ ( 𝐶 𝐹 𝐴 ) 𝑅 ( 𝐶 𝐹 𝐵 ) ) ) | |
| 5 | 4 | 3expia | ⊢ ( ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ) → ( 𝐶 ∈ 𝑆 → ( 𝐴 𝑅 𝐵 ↔ ( 𝐶 𝐹 𝐴 ) 𝑅 ( 𝐶 𝐹 𝐵 ) ) ) ) |
| 6 | 2 | brel | ⊢ ( 𝐴 𝑅 𝐵 → ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ) ) |
| 7 | 2 | brel | ⊢ ( ( 𝐶 𝐹 𝐴 ) 𝑅 ( 𝐶 𝐹 𝐵 ) → ( ( 𝐶 𝐹 𝐴 ) ∈ 𝑆 ∧ ( 𝐶 𝐹 𝐵 ) ∈ 𝑆 ) ) |
| 8 | 1 3 | ndmovrcl | ⊢ ( ( 𝐶 𝐹 𝐴 ) ∈ 𝑆 → ( 𝐶 ∈ 𝑆 ∧ 𝐴 ∈ 𝑆 ) ) |
| 9 | 8 | simprd | ⊢ ( ( 𝐶 𝐹 𝐴 ) ∈ 𝑆 → 𝐴 ∈ 𝑆 ) |
| 10 | 1 3 | ndmovrcl | ⊢ ( ( 𝐶 𝐹 𝐵 ) ∈ 𝑆 → ( 𝐶 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ) ) |
| 11 | 10 | simprd | ⊢ ( ( 𝐶 𝐹 𝐵 ) ∈ 𝑆 → 𝐵 ∈ 𝑆 ) |
| 12 | 9 11 | anim12i | ⊢ ( ( ( 𝐶 𝐹 𝐴 ) ∈ 𝑆 ∧ ( 𝐶 𝐹 𝐵 ) ∈ 𝑆 ) → ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ) ) |
| 13 | 7 12 | syl | ⊢ ( ( 𝐶 𝐹 𝐴 ) 𝑅 ( 𝐶 𝐹 𝐵 ) → ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ) ) |
| 14 | 6 13 | pm5.21ni | ⊢ ( ¬ ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ) → ( 𝐴 𝑅 𝐵 ↔ ( 𝐶 𝐹 𝐴 ) 𝑅 ( 𝐶 𝐹 𝐵 ) ) ) |
| 15 | 14 | a1d | ⊢ ( ¬ ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ) → ( 𝐶 ∈ 𝑆 → ( 𝐴 𝑅 𝐵 ↔ ( 𝐶 𝐹 𝐴 ) 𝑅 ( 𝐶 𝐹 𝐵 ) ) ) ) |
| 16 | 5 15 | pm2.61i | ⊢ ( 𝐶 ∈ 𝑆 → ( 𝐴 𝑅 𝐵 ↔ ( 𝐶 𝐹 𝐴 ) 𝑅 ( 𝐶 𝐹 𝐵 ) ) ) |