This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A subspace of a Banach space is a Banach space iff it is closed. (Contributed by Mario Carneiro, 15-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lssbn.x | ⊢ 𝑋 = ( 𝑊 ↾s 𝑈 ) | |
| lssbn.s | ⊢ 𝑆 = ( LSubSp ‘ 𝑊 ) | ||
| lssbn.j | ⊢ 𝐽 = ( TopOpen ‘ 𝑊 ) | ||
| Assertion | lssbn | ⊢ ( ( 𝑊 ∈ Ban ∧ 𝑈 ∈ 𝑆 ) → ( 𝑋 ∈ Ban ↔ 𝑈 ∈ ( Clsd ‘ 𝐽 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lssbn.x | ⊢ 𝑋 = ( 𝑊 ↾s 𝑈 ) | |
| 2 | lssbn.s | ⊢ 𝑆 = ( LSubSp ‘ 𝑊 ) | |
| 3 | lssbn.j | ⊢ 𝐽 = ( TopOpen ‘ 𝑊 ) | |
| 4 | bnnvc | ⊢ ( 𝑊 ∈ Ban → 𝑊 ∈ NrmVec ) | |
| 5 | 1 2 | lssnvc | ⊢ ( ( 𝑊 ∈ NrmVec ∧ 𝑈 ∈ 𝑆 ) → 𝑋 ∈ NrmVec ) |
| 6 | 4 5 | sylan | ⊢ ( ( 𝑊 ∈ Ban ∧ 𝑈 ∈ 𝑆 ) → 𝑋 ∈ NrmVec ) |
| 7 | eqid | ⊢ ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑊 ) | |
| 8 | 1 7 | resssca | ⊢ ( 𝑈 ∈ 𝑆 → ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑋 ) ) |
| 9 | 8 | adantl | ⊢ ( ( 𝑊 ∈ Ban ∧ 𝑈 ∈ 𝑆 ) → ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑋 ) ) |
| 10 | 7 | bnsca | ⊢ ( 𝑊 ∈ Ban → ( Scalar ‘ 𝑊 ) ∈ CMetSp ) |
| 11 | 10 | adantr | ⊢ ( ( 𝑊 ∈ Ban ∧ 𝑈 ∈ 𝑆 ) → ( Scalar ‘ 𝑊 ) ∈ CMetSp ) |
| 12 | 9 11 | eqeltrrd | ⊢ ( ( 𝑊 ∈ Ban ∧ 𝑈 ∈ 𝑆 ) → ( Scalar ‘ 𝑋 ) ∈ CMetSp ) |
| 13 | eqid | ⊢ ( Scalar ‘ 𝑋 ) = ( Scalar ‘ 𝑋 ) | |
| 14 | 13 | isbn | ⊢ ( 𝑋 ∈ Ban ↔ ( 𝑋 ∈ NrmVec ∧ 𝑋 ∈ CMetSp ∧ ( Scalar ‘ 𝑋 ) ∈ CMetSp ) ) |
| 15 | 3anan32 | ⊢ ( ( 𝑋 ∈ NrmVec ∧ 𝑋 ∈ CMetSp ∧ ( Scalar ‘ 𝑋 ) ∈ CMetSp ) ↔ ( ( 𝑋 ∈ NrmVec ∧ ( Scalar ‘ 𝑋 ) ∈ CMetSp ) ∧ 𝑋 ∈ CMetSp ) ) | |
| 16 | 14 15 | bitri | ⊢ ( 𝑋 ∈ Ban ↔ ( ( 𝑋 ∈ NrmVec ∧ ( Scalar ‘ 𝑋 ) ∈ CMetSp ) ∧ 𝑋 ∈ CMetSp ) ) |
| 17 | 16 | baib | ⊢ ( ( 𝑋 ∈ NrmVec ∧ ( Scalar ‘ 𝑋 ) ∈ CMetSp ) → ( 𝑋 ∈ Ban ↔ 𝑋 ∈ CMetSp ) ) |
| 18 | 6 12 17 | syl2anc | ⊢ ( ( 𝑊 ∈ Ban ∧ 𝑈 ∈ 𝑆 ) → ( 𝑋 ∈ Ban ↔ 𝑋 ∈ CMetSp ) ) |
| 19 | bncms | ⊢ ( 𝑊 ∈ Ban → 𝑊 ∈ CMetSp ) | |
| 20 | eqid | ⊢ ( Base ‘ 𝑊 ) = ( Base ‘ 𝑊 ) | |
| 21 | 20 2 | lssss | ⊢ ( 𝑈 ∈ 𝑆 → 𝑈 ⊆ ( Base ‘ 𝑊 ) ) |
| 22 | 1 20 3 | cmsss | ⊢ ( ( 𝑊 ∈ CMetSp ∧ 𝑈 ⊆ ( Base ‘ 𝑊 ) ) → ( 𝑋 ∈ CMetSp ↔ 𝑈 ∈ ( Clsd ‘ 𝐽 ) ) ) |
| 23 | 19 21 22 | syl2an | ⊢ ( ( 𝑊 ∈ Ban ∧ 𝑈 ∈ 𝑆 ) → ( 𝑋 ∈ CMetSp ↔ 𝑈 ∈ ( Clsd ‘ 𝐽 ) ) ) |
| 24 | 18 23 | bitrd | ⊢ ( ( 𝑊 ∈ Ban ∧ 𝑈 ∈ 𝑆 ) → ( 𝑋 ∈ Ban ↔ 𝑈 ∈ ( Clsd ‘ 𝐽 ) ) ) |