This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The scalar field of a Banach space is complete. (Contributed by NM, 8-Sep-2007) (Revised by Mario Carneiro, 15-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | isbn.1 | ⊢ 𝐹 = ( Scalar ‘ 𝑊 ) | |
| Assertion | bnsca | ⊢ ( 𝑊 ∈ Ban → 𝐹 ∈ CMetSp ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isbn.1 | ⊢ 𝐹 = ( Scalar ‘ 𝑊 ) | |
| 2 | 1 | isbn | ⊢ ( 𝑊 ∈ Ban ↔ ( 𝑊 ∈ NrmVec ∧ 𝑊 ∈ CMetSp ∧ 𝐹 ∈ CMetSp ) ) |
| 3 | 2 | simp3bi | ⊢ ( 𝑊 ∈ Ban → 𝐹 ∈ CMetSp ) |