This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A subspace of a Banach space is a Banach space iff it is closed. (Contributed by Mario Carneiro, 15-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lssbn.x | |- X = ( W |`s U ) |
|
| lssbn.s | |- S = ( LSubSp ` W ) |
||
| lssbn.j | |- J = ( TopOpen ` W ) |
||
| Assertion | lssbn | |- ( ( W e. Ban /\ U e. S ) -> ( X e. Ban <-> U e. ( Clsd ` J ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lssbn.x | |- X = ( W |`s U ) |
|
| 2 | lssbn.s | |- S = ( LSubSp ` W ) |
|
| 3 | lssbn.j | |- J = ( TopOpen ` W ) |
|
| 4 | bnnvc | |- ( W e. Ban -> W e. NrmVec ) |
|
| 5 | 1 2 | lssnvc | |- ( ( W e. NrmVec /\ U e. S ) -> X e. NrmVec ) |
| 6 | 4 5 | sylan | |- ( ( W e. Ban /\ U e. S ) -> X e. NrmVec ) |
| 7 | eqid | |- ( Scalar ` W ) = ( Scalar ` W ) |
|
| 8 | 1 7 | resssca | |- ( U e. S -> ( Scalar ` W ) = ( Scalar ` X ) ) |
| 9 | 8 | adantl | |- ( ( W e. Ban /\ U e. S ) -> ( Scalar ` W ) = ( Scalar ` X ) ) |
| 10 | 7 | bnsca | |- ( W e. Ban -> ( Scalar ` W ) e. CMetSp ) |
| 11 | 10 | adantr | |- ( ( W e. Ban /\ U e. S ) -> ( Scalar ` W ) e. CMetSp ) |
| 12 | 9 11 | eqeltrrd | |- ( ( W e. Ban /\ U e. S ) -> ( Scalar ` X ) e. CMetSp ) |
| 13 | eqid | |- ( Scalar ` X ) = ( Scalar ` X ) |
|
| 14 | 13 | isbn | |- ( X e. Ban <-> ( X e. NrmVec /\ X e. CMetSp /\ ( Scalar ` X ) e. CMetSp ) ) |
| 15 | 3anan32 | |- ( ( X e. NrmVec /\ X e. CMetSp /\ ( Scalar ` X ) e. CMetSp ) <-> ( ( X e. NrmVec /\ ( Scalar ` X ) e. CMetSp ) /\ X e. CMetSp ) ) |
|
| 16 | 14 15 | bitri | |- ( X e. Ban <-> ( ( X e. NrmVec /\ ( Scalar ` X ) e. CMetSp ) /\ X e. CMetSp ) ) |
| 17 | 16 | baib | |- ( ( X e. NrmVec /\ ( Scalar ` X ) e. CMetSp ) -> ( X e. Ban <-> X e. CMetSp ) ) |
| 18 | 6 12 17 | syl2anc | |- ( ( W e. Ban /\ U e. S ) -> ( X e. Ban <-> X e. CMetSp ) ) |
| 19 | bncms | |- ( W e. Ban -> W e. CMetSp ) |
|
| 20 | eqid | |- ( Base ` W ) = ( Base ` W ) |
|
| 21 | 20 2 | lssss | |- ( U e. S -> U C_ ( Base ` W ) ) |
| 22 | 1 20 3 | cmsss | |- ( ( W e. CMetSp /\ U C_ ( Base ` W ) ) -> ( X e. CMetSp <-> U e. ( Clsd ` J ) ) ) |
| 23 | 19 21 22 | syl2an | |- ( ( W e. Ban /\ U e. S ) -> ( X e. CMetSp <-> U e. ( Clsd ` J ) ) ) |
| 24 | 18 23 | bitrd | |- ( ( W e. Ban /\ U e. S ) -> ( X e. Ban <-> U e. ( Clsd ` J ) ) ) |