This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: There is no subspace strictly between the zero subspace and the span of a vector (i.e. a 1-dimensional subspace is an atom). ( h1datomi analog.) (Contributed by NM, 20-Apr-2014) (Proof shortened by Mario Carneiro, 22-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lspsnat.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| lspsnat.z | ⊢ 0 = ( 0g ‘ 𝑊 ) | ||
| lspsnat.s | ⊢ 𝑆 = ( LSubSp ‘ 𝑊 ) | ||
| lspsnat.n | ⊢ 𝑁 = ( LSpan ‘ 𝑊 ) | ||
| Assertion | lspsnat | ⊢ ( ( ( 𝑊 ∈ LVec ∧ 𝑈 ∈ 𝑆 ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑈 ⊆ ( 𝑁 ‘ { 𝑋 } ) ) → ( 𝑈 = ( 𝑁 ‘ { 𝑋 } ) ∨ 𝑈 = { 0 } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lspsnat.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| 2 | lspsnat.z | ⊢ 0 = ( 0g ‘ 𝑊 ) | |
| 3 | lspsnat.s | ⊢ 𝑆 = ( LSubSp ‘ 𝑊 ) | |
| 4 | lspsnat.n | ⊢ 𝑁 = ( LSpan ‘ 𝑊 ) | |
| 5 | n0 | ⊢ ( ( 𝑈 ∖ { 0 } ) ≠ ∅ ↔ ∃ 𝑥 𝑥 ∈ ( 𝑈 ∖ { 0 } ) ) | |
| 6 | simprl | ⊢ ( ( ( 𝑊 ∈ LVec ∧ 𝑈 ∈ 𝑆 ∧ 𝑋 ∈ 𝑉 ) ∧ ( 𝑈 ⊆ ( 𝑁 ‘ { 𝑋 } ) ∧ 𝑥 ∈ ( 𝑈 ∖ { 0 } ) ) ) → 𝑈 ⊆ ( 𝑁 ‘ { 𝑋 } ) ) | |
| 7 | simpl1 | ⊢ ( ( ( 𝑊 ∈ LVec ∧ 𝑈 ∈ 𝑆 ∧ 𝑋 ∈ 𝑉 ) ∧ ( 𝑈 ⊆ ( 𝑁 ‘ { 𝑋 } ) ∧ 𝑥 ∈ ( 𝑈 ∖ { 0 } ) ) ) → 𝑊 ∈ LVec ) | |
| 8 | lveclmod | ⊢ ( 𝑊 ∈ LVec → 𝑊 ∈ LMod ) | |
| 9 | 7 8 | syl | ⊢ ( ( ( 𝑊 ∈ LVec ∧ 𝑈 ∈ 𝑆 ∧ 𝑋 ∈ 𝑉 ) ∧ ( 𝑈 ⊆ ( 𝑁 ‘ { 𝑋 } ) ∧ 𝑥 ∈ ( 𝑈 ∖ { 0 } ) ) ) → 𝑊 ∈ LMod ) |
| 10 | simpl2 | ⊢ ( ( ( 𝑊 ∈ LVec ∧ 𝑈 ∈ 𝑆 ∧ 𝑋 ∈ 𝑉 ) ∧ ( 𝑈 ⊆ ( 𝑁 ‘ { 𝑋 } ) ∧ 𝑥 ∈ ( 𝑈 ∖ { 0 } ) ) ) → 𝑈 ∈ 𝑆 ) | |
| 11 | simprr | ⊢ ( ( ( 𝑊 ∈ LVec ∧ 𝑈 ∈ 𝑆 ∧ 𝑋 ∈ 𝑉 ) ∧ ( 𝑈 ⊆ ( 𝑁 ‘ { 𝑋 } ) ∧ 𝑥 ∈ ( 𝑈 ∖ { 0 } ) ) ) → 𝑥 ∈ ( 𝑈 ∖ { 0 } ) ) | |
| 12 | 11 | eldifad | ⊢ ( ( ( 𝑊 ∈ LVec ∧ 𝑈 ∈ 𝑆 ∧ 𝑋 ∈ 𝑉 ) ∧ ( 𝑈 ⊆ ( 𝑁 ‘ { 𝑋 } ) ∧ 𝑥 ∈ ( 𝑈 ∖ { 0 } ) ) ) → 𝑥 ∈ 𝑈 ) |
| 13 | 3 4 9 10 12 | ellspsn5 | ⊢ ( ( ( 𝑊 ∈ LVec ∧ 𝑈 ∈ 𝑆 ∧ 𝑋 ∈ 𝑉 ) ∧ ( 𝑈 ⊆ ( 𝑁 ‘ { 𝑋 } ) ∧ 𝑥 ∈ ( 𝑈 ∖ { 0 } ) ) ) → ( 𝑁 ‘ { 𝑥 } ) ⊆ 𝑈 ) |
| 14 | 0ss | ⊢ ∅ ⊆ 𝑉 | |
| 15 | 14 | a1i | ⊢ ( ( ( 𝑊 ∈ LVec ∧ 𝑈 ∈ 𝑆 ∧ 𝑋 ∈ 𝑉 ) ∧ ( 𝑈 ⊆ ( 𝑁 ‘ { 𝑋 } ) ∧ 𝑥 ∈ ( 𝑈 ∖ { 0 } ) ) ) → ∅ ⊆ 𝑉 ) |
| 16 | simpl3 | ⊢ ( ( ( 𝑊 ∈ LVec ∧ 𝑈 ∈ 𝑆 ∧ 𝑋 ∈ 𝑉 ) ∧ ( 𝑈 ⊆ ( 𝑁 ‘ { 𝑋 } ) ∧ 𝑥 ∈ ( 𝑈 ∖ { 0 } ) ) ) → 𝑋 ∈ 𝑉 ) | |
| 17 | ssdif | ⊢ ( 𝑈 ⊆ ( 𝑁 ‘ { 𝑋 } ) → ( 𝑈 ∖ { 0 } ) ⊆ ( ( 𝑁 ‘ { 𝑋 } ) ∖ { 0 } ) ) | |
| 18 | 17 | ad2antrl | ⊢ ( ( ( 𝑊 ∈ LVec ∧ 𝑈 ∈ 𝑆 ∧ 𝑋 ∈ 𝑉 ) ∧ ( 𝑈 ⊆ ( 𝑁 ‘ { 𝑋 } ) ∧ 𝑥 ∈ ( 𝑈 ∖ { 0 } ) ) ) → ( 𝑈 ∖ { 0 } ) ⊆ ( ( 𝑁 ‘ { 𝑋 } ) ∖ { 0 } ) ) |
| 19 | 18 11 | sseldd | ⊢ ( ( ( 𝑊 ∈ LVec ∧ 𝑈 ∈ 𝑆 ∧ 𝑋 ∈ 𝑉 ) ∧ ( 𝑈 ⊆ ( 𝑁 ‘ { 𝑋 } ) ∧ 𝑥 ∈ ( 𝑈 ∖ { 0 } ) ) ) → 𝑥 ∈ ( ( 𝑁 ‘ { 𝑋 } ) ∖ { 0 } ) ) |
| 20 | uncom | ⊢ ( ∅ ∪ { 𝑋 } ) = ( { 𝑋 } ∪ ∅ ) | |
| 21 | un0 | ⊢ ( { 𝑋 } ∪ ∅ ) = { 𝑋 } | |
| 22 | 20 21 | eqtri | ⊢ ( ∅ ∪ { 𝑋 } ) = { 𝑋 } |
| 23 | 22 | fveq2i | ⊢ ( 𝑁 ‘ ( ∅ ∪ { 𝑋 } ) ) = ( 𝑁 ‘ { 𝑋 } ) |
| 24 | 23 | a1i | ⊢ ( ( ( 𝑊 ∈ LVec ∧ 𝑈 ∈ 𝑆 ∧ 𝑋 ∈ 𝑉 ) ∧ ( 𝑈 ⊆ ( 𝑁 ‘ { 𝑋 } ) ∧ 𝑥 ∈ ( 𝑈 ∖ { 0 } ) ) ) → ( 𝑁 ‘ ( ∅ ∪ { 𝑋 } ) ) = ( 𝑁 ‘ { 𝑋 } ) ) |
| 25 | 2 4 | lsp0 | ⊢ ( 𝑊 ∈ LMod → ( 𝑁 ‘ ∅ ) = { 0 } ) |
| 26 | 9 25 | syl | ⊢ ( ( ( 𝑊 ∈ LVec ∧ 𝑈 ∈ 𝑆 ∧ 𝑋 ∈ 𝑉 ) ∧ ( 𝑈 ⊆ ( 𝑁 ‘ { 𝑋 } ) ∧ 𝑥 ∈ ( 𝑈 ∖ { 0 } ) ) ) → ( 𝑁 ‘ ∅ ) = { 0 } ) |
| 27 | 24 26 | difeq12d | ⊢ ( ( ( 𝑊 ∈ LVec ∧ 𝑈 ∈ 𝑆 ∧ 𝑋 ∈ 𝑉 ) ∧ ( 𝑈 ⊆ ( 𝑁 ‘ { 𝑋 } ) ∧ 𝑥 ∈ ( 𝑈 ∖ { 0 } ) ) ) → ( ( 𝑁 ‘ ( ∅ ∪ { 𝑋 } ) ) ∖ ( 𝑁 ‘ ∅ ) ) = ( ( 𝑁 ‘ { 𝑋 } ) ∖ { 0 } ) ) |
| 28 | 19 27 | eleqtrrd | ⊢ ( ( ( 𝑊 ∈ LVec ∧ 𝑈 ∈ 𝑆 ∧ 𝑋 ∈ 𝑉 ) ∧ ( 𝑈 ⊆ ( 𝑁 ‘ { 𝑋 } ) ∧ 𝑥 ∈ ( 𝑈 ∖ { 0 } ) ) ) → 𝑥 ∈ ( ( 𝑁 ‘ ( ∅ ∪ { 𝑋 } ) ) ∖ ( 𝑁 ‘ ∅ ) ) ) |
| 29 | 1 3 4 | lspsolv | ⊢ ( ( 𝑊 ∈ LVec ∧ ( ∅ ⊆ 𝑉 ∧ 𝑋 ∈ 𝑉 ∧ 𝑥 ∈ ( ( 𝑁 ‘ ( ∅ ∪ { 𝑋 } ) ) ∖ ( 𝑁 ‘ ∅ ) ) ) ) → 𝑋 ∈ ( 𝑁 ‘ ( ∅ ∪ { 𝑥 } ) ) ) |
| 30 | 7 15 16 28 29 | syl13anc | ⊢ ( ( ( 𝑊 ∈ LVec ∧ 𝑈 ∈ 𝑆 ∧ 𝑋 ∈ 𝑉 ) ∧ ( 𝑈 ⊆ ( 𝑁 ‘ { 𝑋 } ) ∧ 𝑥 ∈ ( 𝑈 ∖ { 0 } ) ) ) → 𝑋 ∈ ( 𝑁 ‘ ( ∅ ∪ { 𝑥 } ) ) ) |
| 31 | uncom | ⊢ ( ∅ ∪ { 𝑥 } ) = ( { 𝑥 } ∪ ∅ ) | |
| 32 | un0 | ⊢ ( { 𝑥 } ∪ ∅ ) = { 𝑥 } | |
| 33 | 31 32 | eqtri | ⊢ ( ∅ ∪ { 𝑥 } ) = { 𝑥 } |
| 34 | 33 | fveq2i | ⊢ ( 𝑁 ‘ ( ∅ ∪ { 𝑥 } ) ) = ( 𝑁 ‘ { 𝑥 } ) |
| 35 | 30 34 | eleqtrdi | ⊢ ( ( ( 𝑊 ∈ LVec ∧ 𝑈 ∈ 𝑆 ∧ 𝑋 ∈ 𝑉 ) ∧ ( 𝑈 ⊆ ( 𝑁 ‘ { 𝑋 } ) ∧ 𝑥 ∈ ( 𝑈 ∖ { 0 } ) ) ) → 𝑋 ∈ ( 𝑁 ‘ { 𝑥 } ) ) |
| 36 | 13 35 | sseldd | ⊢ ( ( ( 𝑊 ∈ LVec ∧ 𝑈 ∈ 𝑆 ∧ 𝑋 ∈ 𝑉 ) ∧ ( 𝑈 ⊆ ( 𝑁 ‘ { 𝑋 } ) ∧ 𝑥 ∈ ( 𝑈 ∖ { 0 } ) ) ) → 𝑋 ∈ 𝑈 ) |
| 37 | 3 4 9 10 36 | ellspsn5 | ⊢ ( ( ( 𝑊 ∈ LVec ∧ 𝑈 ∈ 𝑆 ∧ 𝑋 ∈ 𝑉 ) ∧ ( 𝑈 ⊆ ( 𝑁 ‘ { 𝑋 } ) ∧ 𝑥 ∈ ( 𝑈 ∖ { 0 } ) ) ) → ( 𝑁 ‘ { 𝑋 } ) ⊆ 𝑈 ) |
| 38 | 6 37 | eqssd | ⊢ ( ( ( 𝑊 ∈ LVec ∧ 𝑈 ∈ 𝑆 ∧ 𝑋 ∈ 𝑉 ) ∧ ( 𝑈 ⊆ ( 𝑁 ‘ { 𝑋 } ) ∧ 𝑥 ∈ ( 𝑈 ∖ { 0 } ) ) ) → 𝑈 = ( 𝑁 ‘ { 𝑋 } ) ) |
| 39 | 38 | expr | ⊢ ( ( ( 𝑊 ∈ LVec ∧ 𝑈 ∈ 𝑆 ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑈 ⊆ ( 𝑁 ‘ { 𝑋 } ) ) → ( 𝑥 ∈ ( 𝑈 ∖ { 0 } ) → 𝑈 = ( 𝑁 ‘ { 𝑋 } ) ) ) |
| 40 | 39 | exlimdv | ⊢ ( ( ( 𝑊 ∈ LVec ∧ 𝑈 ∈ 𝑆 ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑈 ⊆ ( 𝑁 ‘ { 𝑋 } ) ) → ( ∃ 𝑥 𝑥 ∈ ( 𝑈 ∖ { 0 } ) → 𝑈 = ( 𝑁 ‘ { 𝑋 } ) ) ) |
| 41 | 5 40 | biimtrid | ⊢ ( ( ( 𝑊 ∈ LVec ∧ 𝑈 ∈ 𝑆 ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑈 ⊆ ( 𝑁 ‘ { 𝑋 } ) ) → ( ( 𝑈 ∖ { 0 } ) ≠ ∅ → 𝑈 = ( 𝑁 ‘ { 𝑋 } ) ) ) |
| 42 | 41 | necon1bd | ⊢ ( ( ( 𝑊 ∈ LVec ∧ 𝑈 ∈ 𝑆 ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑈 ⊆ ( 𝑁 ‘ { 𝑋 } ) ) → ( ¬ 𝑈 = ( 𝑁 ‘ { 𝑋 } ) → ( 𝑈 ∖ { 0 } ) = ∅ ) ) |
| 43 | ssdif0 | ⊢ ( 𝑈 ⊆ { 0 } ↔ ( 𝑈 ∖ { 0 } ) = ∅ ) | |
| 44 | 42 43 | imbitrrdi | ⊢ ( ( ( 𝑊 ∈ LVec ∧ 𝑈 ∈ 𝑆 ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑈 ⊆ ( 𝑁 ‘ { 𝑋 } ) ) → ( ¬ 𝑈 = ( 𝑁 ‘ { 𝑋 } ) → 𝑈 ⊆ { 0 } ) ) |
| 45 | simpl1 | ⊢ ( ( ( 𝑊 ∈ LVec ∧ 𝑈 ∈ 𝑆 ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑈 ⊆ ( 𝑁 ‘ { 𝑋 } ) ) → 𝑊 ∈ LVec ) | |
| 46 | 45 8 | syl | ⊢ ( ( ( 𝑊 ∈ LVec ∧ 𝑈 ∈ 𝑆 ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑈 ⊆ ( 𝑁 ‘ { 𝑋 } ) ) → 𝑊 ∈ LMod ) |
| 47 | simpl2 | ⊢ ( ( ( 𝑊 ∈ LVec ∧ 𝑈 ∈ 𝑆 ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑈 ⊆ ( 𝑁 ‘ { 𝑋 } ) ) → 𝑈 ∈ 𝑆 ) | |
| 48 | 2 3 | lssle0 | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ) → ( 𝑈 ⊆ { 0 } ↔ 𝑈 = { 0 } ) ) |
| 49 | 46 47 48 | syl2anc | ⊢ ( ( ( 𝑊 ∈ LVec ∧ 𝑈 ∈ 𝑆 ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑈 ⊆ ( 𝑁 ‘ { 𝑋 } ) ) → ( 𝑈 ⊆ { 0 } ↔ 𝑈 = { 0 } ) ) |
| 50 | 44 49 | sylibd | ⊢ ( ( ( 𝑊 ∈ LVec ∧ 𝑈 ∈ 𝑆 ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑈 ⊆ ( 𝑁 ‘ { 𝑋 } ) ) → ( ¬ 𝑈 = ( 𝑁 ‘ { 𝑋 } ) → 𝑈 = { 0 } ) ) |
| 51 | 50 | orrd | ⊢ ( ( ( 𝑊 ∈ LVec ∧ 𝑈 ∈ 𝑆 ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑈 ⊆ ( 𝑁 ‘ { 𝑋 } ) ) → ( 𝑈 = ( 𝑁 ‘ { 𝑋 } ) ∨ 𝑈 = { 0 } ) ) |