This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The span of a singleton covers the zero subspace, using Definition 3.2.18 of PtakPulmannova p. 68 for "covers".) (Contributed by NM, 12-Aug-2014) (Revised by AV, 13-Jul-2022)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lspsncv0.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| lspsncv0.z | ⊢ 0 = ( 0g ‘ 𝑊 ) | ||
| lspsncv0.s | ⊢ 𝑆 = ( LSubSp ‘ 𝑊 ) | ||
| lspsncv0.n | ⊢ 𝑁 = ( LSpan ‘ 𝑊 ) | ||
| lspsncv0.w | ⊢ ( 𝜑 → 𝑊 ∈ LVec ) | ||
| lspsncv0.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) | ||
| Assertion | lspsncv0 | ⊢ ( 𝜑 → ¬ ∃ 𝑦 ∈ 𝑆 ( { 0 } ⊊ 𝑦 ∧ 𝑦 ⊊ ( 𝑁 ‘ { 𝑋 } ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lspsncv0.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| 2 | lspsncv0.z | ⊢ 0 = ( 0g ‘ 𝑊 ) | |
| 3 | lspsncv0.s | ⊢ 𝑆 = ( LSubSp ‘ 𝑊 ) | |
| 4 | lspsncv0.n | ⊢ 𝑁 = ( LSpan ‘ 𝑊 ) | |
| 5 | lspsncv0.w | ⊢ ( 𝜑 → 𝑊 ∈ LVec ) | |
| 6 | lspsncv0.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) | |
| 7 | df-pss | ⊢ ( { 0 } ⊊ 𝑦 ↔ ( { 0 } ⊆ 𝑦 ∧ { 0 } ≠ 𝑦 ) ) | |
| 8 | simpr | ⊢ ( ( { 0 } ⊆ 𝑦 ∧ { 0 } ≠ 𝑦 ) → { 0 } ≠ 𝑦 ) | |
| 9 | nesym | ⊢ ( { 0 } ≠ 𝑦 ↔ ¬ 𝑦 = { 0 } ) | |
| 10 | 8 9 | sylib | ⊢ ( ( { 0 } ⊆ 𝑦 ∧ { 0 } ≠ 𝑦 ) → ¬ 𝑦 = { 0 } ) |
| 11 | 7 10 | sylbi | ⊢ ( { 0 } ⊊ 𝑦 → ¬ 𝑦 = { 0 } ) |
| 12 | 5 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) ∧ 𝑦 ⊆ ( 𝑁 ‘ { 𝑋 } ) ) → 𝑊 ∈ LVec ) |
| 13 | simplr | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) ∧ 𝑦 ⊆ ( 𝑁 ‘ { 𝑋 } ) ) → 𝑦 ∈ 𝑆 ) | |
| 14 | 6 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) ∧ 𝑦 ⊆ ( 𝑁 ‘ { 𝑋 } ) ) → 𝑋 ∈ 𝑉 ) |
| 15 | simpr | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) ∧ 𝑦 ⊆ ( 𝑁 ‘ { 𝑋 } ) ) → 𝑦 ⊆ ( 𝑁 ‘ { 𝑋 } ) ) | |
| 16 | 1 2 3 4 | lspsnat | ⊢ ( ( ( 𝑊 ∈ LVec ∧ 𝑦 ∈ 𝑆 ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑦 ⊆ ( 𝑁 ‘ { 𝑋 } ) ) → ( 𝑦 = ( 𝑁 ‘ { 𝑋 } ) ∨ 𝑦 = { 0 } ) ) |
| 17 | 12 13 14 15 16 | syl31anc | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) ∧ 𝑦 ⊆ ( 𝑁 ‘ { 𝑋 } ) ) → ( 𝑦 = ( 𝑁 ‘ { 𝑋 } ) ∨ 𝑦 = { 0 } ) ) |
| 18 | 17 | orcomd | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) ∧ 𝑦 ⊆ ( 𝑁 ‘ { 𝑋 } ) ) → ( 𝑦 = { 0 } ∨ 𝑦 = ( 𝑁 ‘ { 𝑋 } ) ) ) |
| 19 | 18 | ord | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) ∧ 𝑦 ⊆ ( 𝑁 ‘ { 𝑋 } ) ) → ( ¬ 𝑦 = { 0 } → 𝑦 = ( 𝑁 ‘ { 𝑋 } ) ) ) |
| 20 | 19 | ex | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) → ( 𝑦 ⊆ ( 𝑁 ‘ { 𝑋 } ) → ( ¬ 𝑦 = { 0 } → 𝑦 = ( 𝑁 ‘ { 𝑋 } ) ) ) ) |
| 21 | 20 | com23 | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) → ( ¬ 𝑦 = { 0 } → ( 𝑦 ⊆ ( 𝑁 ‘ { 𝑋 } ) → 𝑦 = ( 𝑁 ‘ { 𝑋 } ) ) ) ) |
| 22 | npss | ⊢ ( ¬ 𝑦 ⊊ ( 𝑁 ‘ { 𝑋 } ) ↔ ( 𝑦 ⊆ ( 𝑁 ‘ { 𝑋 } ) → 𝑦 = ( 𝑁 ‘ { 𝑋 } ) ) ) | |
| 23 | 21 22 | imbitrrdi | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) → ( ¬ 𝑦 = { 0 } → ¬ 𝑦 ⊊ ( 𝑁 ‘ { 𝑋 } ) ) ) |
| 24 | 11 23 | syl5 | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) → ( { 0 } ⊊ 𝑦 → ¬ 𝑦 ⊊ ( 𝑁 ‘ { 𝑋 } ) ) ) |
| 25 | 24 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑦 ∈ 𝑆 ( { 0 } ⊊ 𝑦 → ¬ 𝑦 ⊊ ( 𝑁 ‘ { 𝑋 } ) ) ) |
| 26 | ralinexa | ⊢ ( ∀ 𝑦 ∈ 𝑆 ( { 0 } ⊊ 𝑦 → ¬ 𝑦 ⊊ ( 𝑁 ‘ { 𝑋 } ) ) ↔ ¬ ∃ 𝑦 ∈ 𝑆 ( { 0 } ⊊ 𝑦 ∧ 𝑦 ⊊ ( 𝑁 ‘ { 𝑋 } ) ) ) | |
| 27 | 25 26 | sylib | ⊢ ( 𝜑 → ¬ ∃ 𝑦 ∈ 𝑆 ( { 0 } ⊊ 𝑦 ∧ 𝑦 ⊊ ( 𝑁 ‘ { 𝑋 } ) ) ) |