This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A 1-dimensional subspace is an atom. (Contributed by NM, 20-Jul-2001) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | h1datom.1 | ⊢ 𝐴 ∈ Cℋ | |
| h1datom.2 | ⊢ 𝐵 ∈ ℋ | ||
| Assertion | h1datomi | ⊢ ( 𝐴 ⊆ ( ⊥ ‘ ( ⊥ ‘ { 𝐵 } ) ) → ( 𝐴 = ( ⊥ ‘ ( ⊥ ‘ { 𝐵 } ) ) ∨ 𝐴 = 0ℋ ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | h1datom.1 | ⊢ 𝐴 ∈ Cℋ | |
| 2 | h1datom.2 | ⊢ 𝐵 ∈ ℋ | |
| 3 | 1 | chne0i | ⊢ ( 𝐴 ≠ 0ℋ ↔ ∃ 𝑥 ∈ 𝐴 𝑥 ≠ 0ℎ ) |
| 4 | ssel | ⊢ ( 𝐴 ⊆ ( ⊥ ‘ ( ⊥ ‘ { 𝐵 } ) ) → ( 𝑥 ∈ 𝐴 → 𝑥 ∈ ( ⊥ ‘ ( ⊥ ‘ { 𝐵 } ) ) ) ) | |
| 5 | 2 | h1de2ci | ⊢ ( 𝑥 ∈ ( ⊥ ‘ ( ⊥ ‘ { 𝐵 } ) ) ↔ ∃ 𝑦 ∈ ℂ 𝑥 = ( 𝑦 ·ℎ 𝐵 ) ) |
| 6 | oveq1 | ⊢ ( 𝑦 = 0 → ( 𝑦 ·ℎ 𝐵 ) = ( 0 ·ℎ 𝐵 ) ) | |
| 7 | ax-hvmul0 | ⊢ ( 𝐵 ∈ ℋ → ( 0 ·ℎ 𝐵 ) = 0ℎ ) | |
| 8 | 2 7 | ax-mp | ⊢ ( 0 ·ℎ 𝐵 ) = 0ℎ |
| 9 | 6 8 | eqtrdi | ⊢ ( 𝑦 = 0 → ( 𝑦 ·ℎ 𝐵 ) = 0ℎ ) |
| 10 | eqeq1 | ⊢ ( 𝑥 = ( 𝑦 ·ℎ 𝐵 ) → ( 𝑥 = 0ℎ ↔ ( 𝑦 ·ℎ 𝐵 ) = 0ℎ ) ) | |
| 11 | 9 10 | imbitrrid | ⊢ ( 𝑥 = ( 𝑦 ·ℎ 𝐵 ) → ( 𝑦 = 0 → 𝑥 = 0ℎ ) ) |
| 12 | 11 | necon3d | ⊢ ( 𝑥 = ( 𝑦 ·ℎ 𝐵 ) → ( 𝑥 ≠ 0ℎ → 𝑦 ≠ 0 ) ) |
| 13 | 12 | adantl | ⊢ ( ( 𝑦 ∈ ℂ ∧ 𝑥 = ( 𝑦 ·ℎ 𝐵 ) ) → ( 𝑥 ≠ 0ℎ → 𝑦 ≠ 0 ) ) |
| 14 | reccl | ⊢ ( ( 𝑦 ∈ ℂ ∧ 𝑦 ≠ 0 ) → ( 1 / 𝑦 ) ∈ ℂ ) | |
| 15 | 1 | chshii | ⊢ 𝐴 ∈ Sℋ |
| 16 | shmulcl | ⊢ ( ( 𝐴 ∈ Sℋ ∧ ( 1 / 𝑦 ) ∈ ℂ ∧ 𝑥 ∈ 𝐴 ) → ( ( 1 / 𝑦 ) ·ℎ 𝑥 ) ∈ 𝐴 ) | |
| 17 | 15 16 | mp3an1 | ⊢ ( ( ( 1 / 𝑦 ) ∈ ℂ ∧ 𝑥 ∈ 𝐴 ) → ( ( 1 / 𝑦 ) ·ℎ 𝑥 ) ∈ 𝐴 ) |
| 18 | 17 | ex | ⊢ ( ( 1 / 𝑦 ) ∈ ℂ → ( 𝑥 ∈ 𝐴 → ( ( 1 / 𝑦 ) ·ℎ 𝑥 ) ∈ 𝐴 ) ) |
| 19 | 14 18 | syl | ⊢ ( ( 𝑦 ∈ ℂ ∧ 𝑦 ≠ 0 ) → ( 𝑥 ∈ 𝐴 → ( ( 1 / 𝑦 ) ·ℎ 𝑥 ) ∈ 𝐴 ) ) |
| 20 | 19 | adantr | ⊢ ( ( ( 𝑦 ∈ ℂ ∧ 𝑦 ≠ 0 ) ∧ 𝑥 = ( 𝑦 ·ℎ 𝐵 ) ) → ( 𝑥 ∈ 𝐴 → ( ( 1 / 𝑦 ) ·ℎ 𝑥 ) ∈ 𝐴 ) ) |
| 21 | oveq2 | ⊢ ( 𝑥 = ( 𝑦 ·ℎ 𝐵 ) → ( ( 1 / 𝑦 ) ·ℎ 𝑥 ) = ( ( 1 / 𝑦 ) ·ℎ ( 𝑦 ·ℎ 𝐵 ) ) ) | |
| 22 | simpl | ⊢ ( ( 𝑦 ∈ ℂ ∧ 𝑦 ≠ 0 ) → 𝑦 ∈ ℂ ) | |
| 23 | ax-hvmulass | ⊢ ( ( ( 1 / 𝑦 ) ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝐵 ∈ ℋ ) → ( ( ( 1 / 𝑦 ) · 𝑦 ) ·ℎ 𝐵 ) = ( ( 1 / 𝑦 ) ·ℎ ( 𝑦 ·ℎ 𝐵 ) ) ) | |
| 24 | 2 23 | mp3an3 | ⊢ ( ( ( 1 / 𝑦 ) ∈ ℂ ∧ 𝑦 ∈ ℂ ) → ( ( ( 1 / 𝑦 ) · 𝑦 ) ·ℎ 𝐵 ) = ( ( 1 / 𝑦 ) ·ℎ ( 𝑦 ·ℎ 𝐵 ) ) ) |
| 25 | 14 22 24 | syl2anc | ⊢ ( ( 𝑦 ∈ ℂ ∧ 𝑦 ≠ 0 ) → ( ( ( 1 / 𝑦 ) · 𝑦 ) ·ℎ 𝐵 ) = ( ( 1 / 𝑦 ) ·ℎ ( 𝑦 ·ℎ 𝐵 ) ) ) |
| 26 | recid2 | ⊢ ( ( 𝑦 ∈ ℂ ∧ 𝑦 ≠ 0 ) → ( ( 1 / 𝑦 ) · 𝑦 ) = 1 ) | |
| 27 | 26 | oveq1d | ⊢ ( ( 𝑦 ∈ ℂ ∧ 𝑦 ≠ 0 ) → ( ( ( 1 / 𝑦 ) · 𝑦 ) ·ℎ 𝐵 ) = ( 1 ·ℎ 𝐵 ) ) |
| 28 | 25 27 | eqtr3d | ⊢ ( ( 𝑦 ∈ ℂ ∧ 𝑦 ≠ 0 ) → ( ( 1 / 𝑦 ) ·ℎ ( 𝑦 ·ℎ 𝐵 ) ) = ( 1 ·ℎ 𝐵 ) ) |
| 29 | ax-hvmulid | ⊢ ( 𝐵 ∈ ℋ → ( 1 ·ℎ 𝐵 ) = 𝐵 ) | |
| 30 | 2 29 | ax-mp | ⊢ ( 1 ·ℎ 𝐵 ) = 𝐵 |
| 31 | 28 30 | eqtrdi | ⊢ ( ( 𝑦 ∈ ℂ ∧ 𝑦 ≠ 0 ) → ( ( 1 / 𝑦 ) ·ℎ ( 𝑦 ·ℎ 𝐵 ) ) = 𝐵 ) |
| 32 | 21 31 | sylan9eqr | ⊢ ( ( ( 𝑦 ∈ ℂ ∧ 𝑦 ≠ 0 ) ∧ 𝑥 = ( 𝑦 ·ℎ 𝐵 ) ) → ( ( 1 / 𝑦 ) ·ℎ 𝑥 ) = 𝐵 ) |
| 33 | 32 | eleq1d | ⊢ ( ( ( 𝑦 ∈ ℂ ∧ 𝑦 ≠ 0 ) ∧ 𝑥 = ( 𝑦 ·ℎ 𝐵 ) ) → ( ( ( 1 / 𝑦 ) ·ℎ 𝑥 ) ∈ 𝐴 ↔ 𝐵 ∈ 𝐴 ) ) |
| 34 | 20 33 | sylibd | ⊢ ( ( ( 𝑦 ∈ ℂ ∧ 𝑦 ≠ 0 ) ∧ 𝑥 = ( 𝑦 ·ℎ 𝐵 ) ) → ( 𝑥 ∈ 𝐴 → 𝐵 ∈ 𝐴 ) ) |
| 35 | 34 | exp31 | ⊢ ( 𝑦 ∈ ℂ → ( 𝑦 ≠ 0 → ( 𝑥 = ( 𝑦 ·ℎ 𝐵 ) → ( 𝑥 ∈ 𝐴 → 𝐵 ∈ 𝐴 ) ) ) ) |
| 36 | 35 | com23 | ⊢ ( 𝑦 ∈ ℂ → ( 𝑥 = ( 𝑦 ·ℎ 𝐵 ) → ( 𝑦 ≠ 0 → ( 𝑥 ∈ 𝐴 → 𝐵 ∈ 𝐴 ) ) ) ) |
| 37 | 36 | imp | ⊢ ( ( 𝑦 ∈ ℂ ∧ 𝑥 = ( 𝑦 ·ℎ 𝐵 ) ) → ( 𝑦 ≠ 0 → ( 𝑥 ∈ 𝐴 → 𝐵 ∈ 𝐴 ) ) ) |
| 38 | 13 37 | syld | ⊢ ( ( 𝑦 ∈ ℂ ∧ 𝑥 = ( 𝑦 ·ℎ 𝐵 ) ) → ( 𝑥 ≠ 0ℎ → ( 𝑥 ∈ 𝐴 → 𝐵 ∈ 𝐴 ) ) ) |
| 39 | 38 | com3r | ⊢ ( 𝑥 ∈ 𝐴 → ( ( 𝑦 ∈ ℂ ∧ 𝑥 = ( 𝑦 ·ℎ 𝐵 ) ) → ( 𝑥 ≠ 0ℎ → 𝐵 ∈ 𝐴 ) ) ) |
| 40 | 39 | expd | ⊢ ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ ℂ → ( 𝑥 = ( 𝑦 ·ℎ 𝐵 ) → ( 𝑥 ≠ 0ℎ → 𝐵 ∈ 𝐴 ) ) ) ) |
| 41 | 40 | rexlimdv | ⊢ ( 𝑥 ∈ 𝐴 → ( ∃ 𝑦 ∈ ℂ 𝑥 = ( 𝑦 ·ℎ 𝐵 ) → ( 𝑥 ≠ 0ℎ → 𝐵 ∈ 𝐴 ) ) ) |
| 42 | 5 41 | biimtrid | ⊢ ( 𝑥 ∈ 𝐴 → ( 𝑥 ∈ ( ⊥ ‘ ( ⊥ ‘ { 𝐵 } ) ) → ( 𝑥 ≠ 0ℎ → 𝐵 ∈ 𝐴 ) ) ) |
| 43 | 4 42 | sylcom | ⊢ ( 𝐴 ⊆ ( ⊥ ‘ ( ⊥ ‘ { 𝐵 } ) ) → ( 𝑥 ∈ 𝐴 → ( 𝑥 ≠ 0ℎ → 𝐵 ∈ 𝐴 ) ) ) |
| 44 | 43 | rexlimdv | ⊢ ( 𝐴 ⊆ ( ⊥ ‘ ( ⊥ ‘ { 𝐵 } ) ) → ( ∃ 𝑥 ∈ 𝐴 𝑥 ≠ 0ℎ → 𝐵 ∈ 𝐴 ) ) |
| 45 | 3 44 | biimtrid | ⊢ ( 𝐴 ⊆ ( ⊥ ‘ ( ⊥ ‘ { 𝐵 } ) ) → ( 𝐴 ≠ 0ℋ → 𝐵 ∈ 𝐴 ) ) |
| 46 | snssi | ⊢ ( 𝐵 ∈ 𝐴 → { 𝐵 } ⊆ 𝐴 ) | |
| 47 | snssi | ⊢ ( 𝐵 ∈ ℋ → { 𝐵 } ⊆ ℋ ) | |
| 48 | 2 47 | ax-mp | ⊢ { 𝐵 } ⊆ ℋ |
| 49 | 1 | chssii | ⊢ 𝐴 ⊆ ℋ |
| 50 | 48 49 | occon2i | ⊢ ( { 𝐵 } ⊆ 𝐴 → ( ⊥ ‘ ( ⊥ ‘ { 𝐵 } ) ) ⊆ ( ⊥ ‘ ( ⊥ ‘ 𝐴 ) ) ) |
| 51 | 46 50 | syl | ⊢ ( 𝐵 ∈ 𝐴 → ( ⊥ ‘ ( ⊥ ‘ { 𝐵 } ) ) ⊆ ( ⊥ ‘ ( ⊥ ‘ 𝐴 ) ) ) |
| 52 | 1 | ococi | ⊢ ( ⊥ ‘ ( ⊥ ‘ 𝐴 ) ) = 𝐴 |
| 53 | 51 52 | sseqtrdi | ⊢ ( 𝐵 ∈ 𝐴 → ( ⊥ ‘ ( ⊥ ‘ { 𝐵 } ) ) ⊆ 𝐴 ) |
| 54 | 45 53 | syl6 | ⊢ ( 𝐴 ⊆ ( ⊥ ‘ ( ⊥ ‘ { 𝐵 } ) ) → ( 𝐴 ≠ 0ℋ → ( ⊥ ‘ ( ⊥ ‘ { 𝐵 } ) ) ⊆ 𝐴 ) ) |
| 55 | 54 | anc2li | ⊢ ( 𝐴 ⊆ ( ⊥ ‘ ( ⊥ ‘ { 𝐵 } ) ) → ( 𝐴 ≠ 0ℋ → ( 𝐴 ⊆ ( ⊥ ‘ ( ⊥ ‘ { 𝐵 } ) ) ∧ ( ⊥ ‘ ( ⊥ ‘ { 𝐵 } ) ) ⊆ 𝐴 ) ) ) |
| 56 | eqss | ⊢ ( 𝐴 = ( ⊥ ‘ ( ⊥ ‘ { 𝐵 } ) ) ↔ ( 𝐴 ⊆ ( ⊥ ‘ ( ⊥ ‘ { 𝐵 } ) ) ∧ ( ⊥ ‘ ( ⊥ ‘ { 𝐵 } ) ) ⊆ 𝐴 ) ) | |
| 57 | 55 56 | imbitrrdi | ⊢ ( 𝐴 ⊆ ( ⊥ ‘ ( ⊥ ‘ { 𝐵 } ) ) → ( 𝐴 ≠ 0ℋ → 𝐴 = ( ⊥ ‘ ( ⊥ ‘ { 𝐵 } ) ) ) ) |
| 58 | 57 | necon1d | ⊢ ( 𝐴 ⊆ ( ⊥ ‘ ( ⊥ ‘ { 𝐵 } ) ) → ( 𝐴 ≠ ( ⊥ ‘ ( ⊥ ‘ { 𝐵 } ) ) → 𝐴 = 0ℋ ) ) |
| 59 | neor | ⊢ ( ( 𝐴 = ( ⊥ ‘ ( ⊥ ‘ { 𝐵 } ) ) ∨ 𝐴 = 0ℋ ) ↔ ( 𝐴 ≠ ( ⊥ ‘ ( ⊥ ‘ { 𝐵 } ) ) → 𝐴 = 0ℋ ) ) | |
| 60 | 58 59 | sylibr | ⊢ ( 𝐴 ⊆ ( ⊥ ‘ ( ⊥ ‘ { 𝐵 } ) ) → ( 𝐴 = ( ⊥ ‘ ( ⊥ ‘ { 𝐵 } ) ) ∨ 𝐴 = 0ℋ ) ) |