This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: There is no subspace strictly between the zero subspace and the span of a vector (i.e. a 1-dimensional subspace is an atom). ( h1datomi analog.) (Contributed by NM, 20-Apr-2014) (Proof shortened by Mario Carneiro, 22-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lspsnat.v | |- V = ( Base ` W ) |
|
| lspsnat.z | |- .0. = ( 0g ` W ) |
||
| lspsnat.s | |- S = ( LSubSp ` W ) |
||
| lspsnat.n | |- N = ( LSpan ` W ) |
||
| Assertion | lspsnat | |- ( ( ( W e. LVec /\ U e. S /\ X e. V ) /\ U C_ ( N ` { X } ) ) -> ( U = ( N ` { X } ) \/ U = { .0. } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lspsnat.v | |- V = ( Base ` W ) |
|
| 2 | lspsnat.z | |- .0. = ( 0g ` W ) |
|
| 3 | lspsnat.s | |- S = ( LSubSp ` W ) |
|
| 4 | lspsnat.n | |- N = ( LSpan ` W ) |
|
| 5 | n0 | |- ( ( U \ { .0. } ) =/= (/) <-> E. x x e. ( U \ { .0. } ) ) |
|
| 6 | simprl | |- ( ( ( W e. LVec /\ U e. S /\ X e. V ) /\ ( U C_ ( N ` { X } ) /\ x e. ( U \ { .0. } ) ) ) -> U C_ ( N ` { X } ) ) |
|
| 7 | simpl1 | |- ( ( ( W e. LVec /\ U e. S /\ X e. V ) /\ ( U C_ ( N ` { X } ) /\ x e. ( U \ { .0. } ) ) ) -> W e. LVec ) |
|
| 8 | lveclmod | |- ( W e. LVec -> W e. LMod ) |
|
| 9 | 7 8 | syl | |- ( ( ( W e. LVec /\ U e. S /\ X e. V ) /\ ( U C_ ( N ` { X } ) /\ x e. ( U \ { .0. } ) ) ) -> W e. LMod ) |
| 10 | simpl2 | |- ( ( ( W e. LVec /\ U e. S /\ X e. V ) /\ ( U C_ ( N ` { X } ) /\ x e. ( U \ { .0. } ) ) ) -> U e. S ) |
|
| 11 | simprr | |- ( ( ( W e. LVec /\ U e. S /\ X e. V ) /\ ( U C_ ( N ` { X } ) /\ x e. ( U \ { .0. } ) ) ) -> x e. ( U \ { .0. } ) ) |
|
| 12 | 11 | eldifad | |- ( ( ( W e. LVec /\ U e. S /\ X e. V ) /\ ( U C_ ( N ` { X } ) /\ x e. ( U \ { .0. } ) ) ) -> x e. U ) |
| 13 | 3 4 9 10 12 | ellspsn5 | |- ( ( ( W e. LVec /\ U e. S /\ X e. V ) /\ ( U C_ ( N ` { X } ) /\ x e. ( U \ { .0. } ) ) ) -> ( N ` { x } ) C_ U ) |
| 14 | 0ss | |- (/) C_ V |
|
| 15 | 14 | a1i | |- ( ( ( W e. LVec /\ U e. S /\ X e. V ) /\ ( U C_ ( N ` { X } ) /\ x e. ( U \ { .0. } ) ) ) -> (/) C_ V ) |
| 16 | simpl3 | |- ( ( ( W e. LVec /\ U e. S /\ X e. V ) /\ ( U C_ ( N ` { X } ) /\ x e. ( U \ { .0. } ) ) ) -> X e. V ) |
|
| 17 | ssdif | |- ( U C_ ( N ` { X } ) -> ( U \ { .0. } ) C_ ( ( N ` { X } ) \ { .0. } ) ) |
|
| 18 | 17 | ad2antrl | |- ( ( ( W e. LVec /\ U e. S /\ X e. V ) /\ ( U C_ ( N ` { X } ) /\ x e. ( U \ { .0. } ) ) ) -> ( U \ { .0. } ) C_ ( ( N ` { X } ) \ { .0. } ) ) |
| 19 | 18 11 | sseldd | |- ( ( ( W e. LVec /\ U e. S /\ X e. V ) /\ ( U C_ ( N ` { X } ) /\ x e. ( U \ { .0. } ) ) ) -> x e. ( ( N ` { X } ) \ { .0. } ) ) |
| 20 | uncom | |- ( (/) u. { X } ) = ( { X } u. (/) ) |
|
| 21 | un0 | |- ( { X } u. (/) ) = { X } |
|
| 22 | 20 21 | eqtri | |- ( (/) u. { X } ) = { X } |
| 23 | 22 | fveq2i | |- ( N ` ( (/) u. { X } ) ) = ( N ` { X } ) |
| 24 | 23 | a1i | |- ( ( ( W e. LVec /\ U e. S /\ X e. V ) /\ ( U C_ ( N ` { X } ) /\ x e. ( U \ { .0. } ) ) ) -> ( N ` ( (/) u. { X } ) ) = ( N ` { X } ) ) |
| 25 | 2 4 | lsp0 | |- ( W e. LMod -> ( N ` (/) ) = { .0. } ) |
| 26 | 9 25 | syl | |- ( ( ( W e. LVec /\ U e. S /\ X e. V ) /\ ( U C_ ( N ` { X } ) /\ x e. ( U \ { .0. } ) ) ) -> ( N ` (/) ) = { .0. } ) |
| 27 | 24 26 | difeq12d | |- ( ( ( W e. LVec /\ U e. S /\ X e. V ) /\ ( U C_ ( N ` { X } ) /\ x e. ( U \ { .0. } ) ) ) -> ( ( N ` ( (/) u. { X } ) ) \ ( N ` (/) ) ) = ( ( N ` { X } ) \ { .0. } ) ) |
| 28 | 19 27 | eleqtrrd | |- ( ( ( W e. LVec /\ U e. S /\ X e. V ) /\ ( U C_ ( N ` { X } ) /\ x e. ( U \ { .0. } ) ) ) -> x e. ( ( N ` ( (/) u. { X } ) ) \ ( N ` (/) ) ) ) |
| 29 | 1 3 4 | lspsolv | |- ( ( W e. LVec /\ ( (/) C_ V /\ X e. V /\ x e. ( ( N ` ( (/) u. { X } ) ) \ ( N ` (/) ) ) ) ) -> X e. ( N ` ( (/) u. { x } ) ) ) |
| 30 | 7 15 16 28 29 | syl13anc | |- ( ( ( W e. LVec /\ U e. S /\ X e. V ) /\ ( U C_ ( N ` { X } ) /\ x e. ( U \ { .0. } ) ) ) -> X e. ( N ` ( (/) u. { x } ) ) ) |
| 31 | uncom | |- ( (/) u. { x } ) = ( { x } u. (/) ) |
|
| 32 | un0 | |- ( { x } u. (/) ) = { x } |
|
| 33 | 31 32 | eqtri | |- ( (/) u. { x } ) = { x } |
| 34 | 33 | fveq2i | |- ( N ` ( (/) u. { x } ) ) = ( N ` { x } ) |
| 35 | 30 34 | eleqtrdi | |- ( ( ( W e. LVec /\ U e. S /\ X e. V ) /\ ( U C_ ( N ` { X } ) /\ x e. ( U \ { .0. } ) ) ) -> X e. ( N ` { x } ) ) |
| 36 | 13 35 | sseldd | |- ( ( ( W e. LVec /\ U e. S /\ X e. V ) /\ ( U C_ ( N ` { X } ) /\ x e. ( U \ { .0. } ) ) ) -> X e. U ) |
| 37 | 3 4 9 10 36 | ellspsn5 | |- ( ( ( W e. LVec /\ U e. S /\ X e. V ) /\ ( U C_ ( N ` { X } ) /\ x e. ( U \ { .0. } ) ) ) -> ( N ` { X } ) C_ U ) |
| 38 | 6 37 | eqssd | |- ( ( ( W e. LVec /\ U e. S /\ X e. V ) /\ ( U C_ ( N ` { X } ) /\ x e. ( U \ { .0. } ) ) ) -> U = ( N ` { X } ) ) |
| 39 | 38 | expr | |- ( ( ( W e. LVec /\ U e. S /\ X e. V ) /\ U C_ ( N ` { X } ) ) -> ( x e. ( U \ { .0. } ) -> U = ( N ` { X } ) ) ) |
| 40 | 39 | exlimdv | |- ( ( ( W e. LVec /\ U e. S /\ X e. V ) /\ U C_ ( N ` { X } ) ) -> ( E. x x e. ( U \ { .0. } ) -> U = ( N ` { X } ) ) ) |
| 41 | 5 40 | biimtrid | |- ( ( ( W e. LVec /\ U e. S /\ X e. V ) /\ U C_ ( N ` { X } ) ) -> ( ( U \ { .0. } ) =/= (/) -> U = ( N ` { X } ) ) ) |
| 42 | 41 | necon1bd | |- ( ( ( W e. LVec /\ U e. S /\ X e. V ) /\ U C_ ( N ` { X } ) ) -> ( -. U = ( N ` { X } ) -> ( U \ { .0. } ) = (/) ) ) |
| 43 | ssdif0 | |- ( U C_ { .0. } <-> ( U \ { .0. } ) = (/) ) |
|
| 44 | 42 43 | imbitrrdi | |- ( ( ( W e. LVec /\ U e. S /\ X e. V ) /\ U C_ ( N ` { X } ) ) -> ( -. U = ( N ` { X } ) -> U C_ { .0. } ) ) |
| 45 | simpl1 | |- ( ( ( W e. LVec /\ U e. S /\ X e. V ) /\ U C_ ( N ` { X } ) ) -> W e. LVec ) |
|
| 46 | 45 8 | syl | |- ( ( ( W e. LVec /\ U e. S /\ X e. V ) /\ U C_ ( N ` { X } ) ) -> W e. LMod ) |
| 47 | simpl2 | |- ( ( ( W e. LVec /\ U e. S /\ X e. V ) /\ U C_ ( N ` { X } ) ) -> U e. S ) |
|
| 48 | 2 3 | lssle0 | |- ( ( W e. LMod /\ U e. S ) -> ( U C_ { .0. } <-> U = { .0. } ) ) |
| 49 | 46 47 48 | syl2anc | |- ( ( ( W e. LVec /\ U e. S /\ X e. V ) /\ U C_ ( N ` { X } ) ) -> ( U C_ { .0. } <-> U = { .0. } ) ) |
| 50 | 44 49 | sylibd | |- ( ( ( W e. LVec /\ U e. S /\ X e. V ) /\ U C_ ( N ` { X } ) ) -> ( -. U = ( N ` { X } ) -> U = { .0. } ) ) |
| 51 | 50 | orrd | |- ( ( ( W e. LVec /\ U e. S /\ X e. V ) /\ U C_ ( N ` { X } ) ) -> ( U = ( N ` { X } ) \/ U = { .0. } ) ) |