This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for relogmul and relogdiv . Remark of Cohen p. 301 ("The proof of Property 3 is quite similar to the proof given for Property 2"). (Contributed by Steve Rodriguez, 25-Nov-2007)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | relogoprlem.1 | ⊢ ( ( ( log ‘ 𝐴 ) ∈ ℂ ∧ ( log ‘ 𝐵 ) ∈ ℂ ) → ( exp ‘ ( ( log ‘ 𝐴 ) 𝐹 ( log ‘ 𝐵 ) ) ) = ( ( exp ‘ ( log ‘ 𝐴 ) ) 𝐺 ( exp ‘ ( log ‘ 𝐵 ) ) ) ) | |
| relogoprlem.2 | ⊢ ( ( ( log ‘ 𝐴 ) ∈ ℝ ∧ ( log ‘ 𝐵 ) ∈ ℝ ) → ( ( log ‘ 𝐴 ) 𝐹 ( log ‘ 𝐵 ) ) ∈ ℝ ) | ||
| Assertion | relogoprlem | ⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+ ) → ( log ‘ ( 𝐴 𝐺 𝐵 ) ) = ( ( log ‘ 𝐴 ) 𝐹 ( log ‘ 𝐵 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relogoprlem.1 | ⊢ ( ( ( log ‘ 𝐴 ) ∈ ℂ ∧ ( log ‘ 𝐵 ) ∈ ℂ ) → ( exp ‘ ( ( log ‘ 𝐴 ) 𝐹 ( log ‘ 𝐵 ) ) ) = ( ( exp ‘ ( log ‘ 𝐴 ) ) 𝐺 ( exp ‘ ( log ‘ 𝐵 ) ) ) ) | |
| 2 | relogoprlem.2 | ⊢ ( ( ( log ‘ 𝐴 ) ∈ ℝ ∧ ( log ‘ 𝐵 ) ∈ ℝ ) → ( ( log ‘ 𝐴 ) 𝐹 ( log ‘ 𝐵 ) ) ∈ ℝ ) | |
| 3 | reeflog | ⊢ ( 𝐴 ∈ ℝ+ → ( exp ‘ ( log ‘ 𝐴 ) ) = 𝐴 ) | |
| 4 | reeflog | ⊢ ( 𝐵 ∈ ℝ+ → ( exp ‘ ( log ‘ 𝐵 ) ) = 𝐵 ) | |
| 5 | 3 4 | oveqan12d | ⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+ ) → ( ( exp ‘ ( log ‘ 𝐴 ) ) 𝐺 ( exp ‘ ( log ‘ 𝐵 ) ) ) = ( 𝐴 𝐺 𝐵 ) ) |
| 6 | 5 | fveq2d | ⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+ ) → ( log ‘ ( ( exp ‘ ( log ‘ 𝐴 ) ) 𝐺 ( exp ‘ ( log ‘ 𝐵 ) ) ) ) = ( log ‘ ( 𝐴 𝐺 𝐵 ) ) ) |
| 7 | relogcl | ⊢ ( 𝐴 ∈ ℝ+ → ( log ‘ 𝐴 ) ∈ ℝ ) | |
| 8 | relogcl | ⊢ ( 𝐵 ∈ ℝ+ → ( log ‘ 𝐵 ) ∈ ℝ ) | |
| 9 | recn | ⊢ ( ( log ‘ 𝐴 ) ∈ ℝ → ( log ‘ 𝐴 ) ∈ ℂ ) | |
| 10 | recn | ⊢ ( ( log ‘ 𝐵 ) ∈ ℝ → ( log ‘ 𝐵 ) ∈ ℂ ) | |
| 11 | 1 | fveq2d | ⊢ ( ( ( log ‘ 𝐴 ) ∈ ℂ ∧ ( log ‘ 𝐵 ) ∈ ℂ ) → ( log ‘ ( exp ‘ ( ( log ‘ 𝐴 ) 𝐹 ( log ‘ 𝐵 ) ) ) ) = ( log ‘ ( ( exp ‘ ( log ‘ 𝐴 ) ) 𝐺 ( exp ‘ ( log ‘ 𝐵 ) ) ) ) ) |
| 12 | 9 10 11 | syl2an | ⊢ ( ( ( log ‘ 𝐴 ) ∈ ℝ ∧ ( log ‘ 𝐵 ) ∈ ℝ ) → ( log ‘ ( exp ‘ ( ( log ‘ 𝐴 ) 𝐹 ( log ‘ 𝐵 ) ) ) ) = ( log ‘ ( ( exp ‘ ( log ‘ 𝐴 ) ) 𝐺 ( exp ‘ ( log ‘ 𝐵 ) ) ) ) ) |
| 13 | relogef | ⊢ ( ( ( log ‘ 𝐴 ) 𝐹 ( log ‘ 𝐵 ) ) ∈ ℝ → ( log ‘ ( exp ‘ ( ( log ‘ 𝐴 ) 𝐹 ( log ‘ 𝐵 ) ) ) ) = ( ( log ‘ 𝐴 ) 𝐹 ( log ‘ 𝐵 ) ) ) | |
| 14 | 2 13 | syl | ⊢ ( ( ( log ‘ 𝐴 ) ∈ ℝ ∧ ( log ‘ 𝐵 ) ∈ ℝ ) → ( log ‘ ( exp ‘ ( ( log ‘ 𝐴 ) 𝐹 ( log ‘ 𝐵 ) ) ) ) = ( ( log ‘ 𝐴 ) 𝐹 ( log ‘ 𝐵 ) ) ) |
| 15 | 12 14 | eqtr3d | ⊢ ( ( ( log ‘ 𝐴 ) ∈ ℝ ∧ ( log ‘ 𝐵 ) ∈ ℝ ) → ( log ‘ ( ( exp ‘ ( log ‘ 𝐴 ) ) 𝐺 ( exp ‘ ( log ‘ 𝐵 ) ) ) ) = ( ( log ‘ 𝐴 ) 𝐹 ( log ‘ 𝐵 ) ) ) |
| 16 | 7 8 15 | syl2an | ⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+ ) → ( log ‘ ( ( exp ‘ ( log ‘ 𝐴 ) ) 𝐺 ( exp ‘ ( log ‘ 𝐵 ) ) ) ) = ( ( log ‘ 𝐴 ) 𝐹 ( log ‘ 𝐵 ) ) ) |
| 17 | 6 16 | eqtr3d | ⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+ ) → ( log ‘ ( 𝐴 𝐺 𝐵 ) ) = ( ( log ‘ 𝐴 ) 𝐹 ( log ‘ 𝐵 ) ) ) |